e We compare constrained ML and unconstrained
ML by looking at their ratio:

constrained ML

A =

unconstrained ML

1 —_——
(2m)nP/2[Sg|n/2 exp (—13)

1 _np
(27)p/2| S| /2 exp (— )

A n/2
51\
20|

e We reject Hy for small values of A.

How is this equivalent to T??

e With some algebra we can establish that

2 \ —n/2
A:<1+ T )
n—1

a monotone function of 72. That is, increases
in T correspond to decreases in A. = rejecting
for large values of T? is equivalent to rejecting
for small values of A.
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e Also equivalent to rejecting for small values of

3

A=
|20

which is known as Wilk’s Lambda.

e We can also express T2 in terms of A:

e = Hotelling’s T?, Wilk’s Lambda and the like-
lihood ratio test are equivalent. Essentially,
Hotelling’s T2 and Wilk’s Lambda are the LRT.
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Example — Kite Data:

o _ Mg (11801 119.63
~ 357~ \119.63 203.91

= || = 9752.89. From the formula
1 n

20 = n ;(Xi — o) (X — MO)’

with po = (190, 275)’, we can obtain

- 131.13 136.93 -
>0 = (136.93 226.73) %ol = 10,981.56.

It follows that

Ao 9752.89
~ \ 10981.56

The critical value can be obtained from the critical

value for T2 (remember that for o = 0.05 it was
6.578):

6.578\ ~4%/2
J — (1 + ) — .8699%5/2 — (.043.

45/2
) — .8881%%/2 — (.0609.

44
So the result agrees, 0.069 > 0.043 so, again, we do
not reject Hy : o = (190, 275).
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e In this special case (testing Hyp : u = pg) the
LRT happen to be the Hotelling’s 72 and we
know the sampling distribution of T?. There-
fore, we don’t need the sampling distribution of
the likelihood ratio test statistic, A.

e Although there is no general result about the
exact distribution of the likelihood ratio test
statistic, we have the following approximate re-
sult for large sample sizes:

Theorem. Under certain (technical) regularity con-
ditions, for large samples

trained ML
—2log(A):—210g( constraine )&X2(fr)

unconstrained ML

where r =the number of restrictions involved in the
null hypothesis.
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Kite Example (Continued):

The number of restrictions is 7 = 2 because the
null hypothesis involves restrictions on two means:

Test Statistic: —2log(A) = —210g(0.069) = 5.339;
Critical Value: x3 o5(2) = 5.991;
p—value: p = .069

Compare with the exact result:

Test Statistic: 7% = 5.543:
Critical Value: (2(44)/43)F o5(2,43) = 6.578;
p—value: p = .078.
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Estimation of a Multivariate Mean:

Univariate Case: Since \/n(z — u)/s ~ t(n — 1),

1—a:Pr<

T —p

s/v/n

<tqya(n — 1))

SO T £ to/2(n — 1)s/4/n covers p with probability
1 —a.

e Equivalently,

{M; — <ta/2<n_1>}

is a 100(1 — )% confidence set (in this case an
interval) for p.
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Multivariate Case: Similarly, the fact that

p(n —1)
n—p

n(X — p)'STHE — p) ~ F(p,n —p)

implies

{u (X —p)'STHER —p) < pin — 1)

— Fa(p,n—p)}

is a 100(1 — )% confidence region for pu.

e The equation

defines an ellipsoid

i. centered at X;

ii. with axes along ey, ..., e, the eigenvectors
of S;
iii. with the length along e; equal to

\/)‘_’i\/p(n_ 1) Foz(pan_p>

where Aq,..., )\, are the eigenvalues of S.

e Confidence region is an ellipsoid.

107



Example — Kite Data:

Recall x = (193.62,279.78)" will be the center
of confidence ellipsoid.

o_ (12069 12235
~ \122.35  208.54

has eigenvalues

a+c)++/(a—c)?+4b?
2
329.24 £ /(—87.85)% + 4(122.35)2
B 2
To get e, ey: for 1 = 1,2 solve Sx = \;x or, equiv-
alently, the simultaneous equations

N

= 294.61, 34.63

Setting x1 = 1,
Ai — 120.69

122.35

for A1 = 294.61. Normalizing, we get
. 1 1 ~(0.575
1= J1Z+ (1.421)2 \1421) — \ 0.818
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Similarly, we get e; = (0.818,—0.575)". Since
F5(2,43) = 3.214, the lengths along e, e, are

2(44) B
\/294.61\/ t5ag) (3:214) = 6563 and

2(44) B
\/34.63\/ 15(43) (3.214) = 2.250

Now we can sketch the confidence region:
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Drawbacks:
1. Difficult or impossible to draw for p > 3.

2. Knowing whether a particular value is inside the
confidence region is not so simple as in the uni-
variate case. “Is g in the confidence region?”
necessitates testing Hg : p = po.

3. The region is a joint confidence region. Often
we want to be able to make confidence state-
ments about individual components as well.

An Alternative — Separate Univariate Cls:

Recall that for each component x; of x, the univari-
ate 100(1 — )% confidence interval for u; is given

by
T+ a/2\T \/ .
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e If we combine the p 100(1 — )% univariate Cls,
we do not get a 100(1 — )% joint CI for p!

joint cov. prob. = Pr(each int covers resp.u;)

=1-Pr (O {Nz' # T £ taj2(n—1) %}>

1=1

e (This result is known as the Bonferroni Inequal-
ity.)
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e For example, suppose we have a sample from
a bivariate normal population and we are in-
terested in estimating the mean g = (1, o)’
If we form a joint confidence region for p by
combining the univariate 95% confidence inter-
vals, we will get a rectangular joint confidence
region:

Assuming z1,z2 are not independent, the only
confidence statement that we can make about
the joint region is that the probability that both
w1 and po are in the region is at least 90%.
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e Bonferroni Approach: Use a significance level
of a/p for each of the p separate univariate Cls.

ILe., use
_ Siq
xI; + toz/(2p) (n — 1) ;

as the CI for each p;.

— Bonferroni approach ensures that

p
joint cov. prob. > 1 — Za/p
i=1
=1-q.

— Drawback: If p is large each component in-
terval will be very wide (too conservative).
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In addition to desiring CIs for each of the compo-
nents of p, we may be interested in estimating (and
forming a CI around) linear combinations of the u;’s
of the form a’pu.

e E.g.. for the kite data, we may want to estimate
the mean difference between wing length and
tail length; the mean of y = x; — 29 = a'x,
where a’ = (1, —1).

From our sample x4, ..., X, we have a sample of the
linear combinations: wi,...,vy,, where y; = a'x;.
From what we know about multivariate normal dis-
tributions:

Yi,-- -3 Yn Zl"d N(a,,'l’a alza)a

g =a'x, and s?=a’Sa.

Y
Therefore, -

6:/(:,8—&/[2 ~t(n—1)
and

a'X +t,/2(n—1)y/a’Sa/n (%)
is a 100(1 — a)% CI for a'p.
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e Maximal t—statistic Approach: the proba-
bility statement underlying (*) is

/(% — o) L
Pr(\/m <ta/2(n—1)> =1 :

Question: is there a value ¢ such that

~ lal(x —
Pr m|3( 'u)|<c >1 -«
j=1 \/a;-Saj/n

for all possible linear combinations (all a1, as,...)?

e If there were, then we could estimate any and all
linear combinations of the component means,
even those that were suggested by the data,
without our joint coverage probability dropping
below 1 — a.

e There is such a ¢, the maximum over all possible

aof|a'(x—pu |/\/ a’Sa/n. (Why?)

e Doing the maximization we get,

max (X — 4 = /n(X—p)/S~1(x—p)

a \/a’Sa/n
= VT2
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So we can use the square root of the critical
value of T2,

\/p(”‘”Fa@,n—p)

n—p

to obtain simultaneous confidence intervals for
any and all linear combinations a’u:

n—p

a'x + \/p(n — 1)Fa(p,n —p)y/a'Sa/n

In particular, for a component mean p; this pro-
cedure gives

n—p

z; + \/p(n — 1)Fa(p,n —p)\/ Sii/n

Typically, when interested in only estimating
component means, Bonferroni method is bet-
ter. To allow data snooping or when the num-
ber of intervals/tests is large, should use Max ¢
approach.
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Example — Reaction Time:

Reaction times to visual stimuli were obtained
from n = 20 normal young men under three con-
ditions, A, B, C, of stimulus display. The sam-
ple mean vector and variance-covariance matrix for
these data are

21.05 2.2605 2.1763 1.6342
x=|(2165], S= 2.6605 1.8237
28.95 2.4710

Suppose we want to

1. obtain individual CIs for pu; = E(x1), pue =
E(z2), and p3 = E(z3);

2. compare conditions A and B with condition C
(control, perhaps);

3. and after seeing the data suppose that we see a
possible unexpected difference between groups

A and B. We'd like a post hoc CI for pa — pup;

all without exceeding a joint significance level of
a = 0.05.
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Max-t approach:

p(n —1) ~3(19)
— Fo(p,n—p) = 1—7F.05(3, 17)

= (3.353)(3.20) = 10.730

1. Individual Cls:

21.05 £ v/10.730+/2.2605/20 = (19.95,22.15)
21.65 = 1/10.730+/2.6605/20 = (20.46, 22.84)
28.95 4 1/10.730+/2.4710/20 = (27.80, 30.10)

) %7 _1)”’

DN =

2. Estimate %(,UA + pB) — po = (

11 1 1
— —., —1)x = —(21. —(21. — 28.
(55, ~1)% = 5(21.05) + 5(21.65) — 28.95
= —7.60
1/2 0.5842
11 11
(5757_1)5 1/2 :(575,—1) 0.5947
1 —0.7421
= 1.3315
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so our CI is

—7.60 4 1/10.7304/1.3315/20 = (—8.45, —6.75).

. Estimate ua — up = (1,—1,0)pu:

(1,-1,0)% = 21.05 — 21.65 = —0.60

1 0.0842
(1,-1,0)S | -1 | =(1,-1,0) | —0.4842
0 —0.1895

— 0.5684

so our CI is

—0.60+1/10.730+/0.5684,/20 = (—1.15, —0.048).
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Large Sample Result:

e The CIs and tests we have considered thus far
rely on the assumption of multivariate normal-
ity. Under normality, confidence levels and p—
values are exact, because the distribution re-
sults are exact.

e Recall from an earlier result, for large samples

regardless of the distribution of x.

e Therefore, nonnormality can be overcome by a
large sample size and we can base inference on
the y? distribution.
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e An approximate 100(1—«)% CI for a’p is given

by
a'x + /x2(p)v/a'Sa/n

or, for u;,

Z; + /X2 (p)V/sii/n

e An approximate a—level large-sample test of
Hy : p = pg is reject if

—2log(A) > x2(p)

(—21log(A) is approximately equal to T in large
samples).
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Inference about a Pop. Cov. Matrix

Model: (same as before) x1,...,%, ~ Ny(u, %), p,
>, unknown.

e Its unusual that we would be interested in test-
ing Hy : X = Y. Its more likely that we want
to test

011 0 0
0 g929 0
Hy: X = , , . , Versus
0 0 Opp
011 012 O1p
021 022 02p
H1 DY = .
Op1  Op2 Opp

That is, we may want to test independence with
unequal variances versus a general, unconstrained
covariance structure.
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e The null hypothesis here may be equivalently
expressed as the hypothesis of uncorrelated com-
ponents: Hy : P =1 where P is the population
correlation matrix of each x; and I is the iden-
tity matrix.

e LRT: We look at the ratio of the constrained
maximum likelihood versus the unconstrained
maximum of the likelihood. Recall the uncon-
strained ML was

. 1
max L(w, ) = L(ft, %) = —
nas (1, %) = L(fr, X) SLE

In this case the constrained ML is

exp(—np/2)

p
1
L(p, %) = [ ] —np/2
max L{s, o) 1127 exp(—np/2)

where Yo is the value of X under the null hy-
pothesis.

e The ratio of these quantities simplifies to
| S|n /2
i=1(813)"/2

We reject Hy if |R|™/? is smaller than some crit-
ical value.

A= = |R|™/2
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e In large samples we have the result that the
LR is approximately x?(p(p—1)/2) distributed
(there are p(p — 1)/2 off-diagonal elements of %
which are constrained by Hjy to be equal to 0).

e Rejection rule: we reject Hy at significance level
o if

p(p—1)

~2log(A) = —nlog [R] > x2 ("

)

Example - Kite Data:

Recall n = 45, p = 2 variables so p(p — 1)/2 = 1

and
1 0.771
k= <0.771 1 )

—2log(A) = —nlog |R| = —451log(1 — (0.771)?)
= —4510g(0.405) = 40.641

SO

Since x%45(1) = 3.841 we reject Hy (as you should
expect).
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Comparisons of 2 or More Mean Vectors
(See chapter 6 of Johnson and Wichern.)

Generalizing the paired t—test:
Recall the univariate paired t—test:

Suppose we are interested in reaction time and
we have two methods of stimulus presentation that
we’d like to compare. Suppose 40 subjects are avail-
able for an experiment.

e Design 1: Reaction time measured on 20 sub-
jects receiving presentation method 1, reaction
time measured on remaining 20 subjects who
receive presentation method 2.

z1; = R.T. for i*" subject in group 1,7 =1, ..., 20.
T9; = R.T. for i*" subject in group 2,7 =1, ..., 20.
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e Design 2: All 40 subjects are measured for
R.T. using presentation method 1, then all sub-

jects are measured again using presentation method
2.

z1; = R.T. for i*" subject when presentation
method 1 is used, 2 =1,. .., 40.
z9; = R.T. for i*" subject when presentation
method 2 is used, 7 =1, ..., 40.

(How could we improve on design 27)

Assuming there is no order effect, which design
is better?

Answer: design 2.

e Comparisons can be made within subjects, elim-
inating subject-subject differences.

e Allows for more precise estimate of treatment
difference.

e Allows for more power to detect a treatment
effect.
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Two-sample t-test: To test Hg : 1 = po where
p; = E(z;;) for all 4, we compute the test statistic

T1 — T2

—

1 1
P\ T s
and compare to its distribution, t(n; + ng — 2).

e Two-sample ¢ test assumes:

iid , iid
1. 11,--.,T1p, ~ N(p1,07)and xa1,...,Topn, ~
2
N(M270-2)'
2 2

2. 07¢ = 05 (sp is the pooled estimate of the
common variance)

3. Independent samples

e Because of point 3, two sample ¢ is appropriate
for design 1 but not for design 2.
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Paired t— test: We look at within subject differ-
ences in reaction time for the two presentation meth-
ods.

e Define dz = T1; — T94, 1= 1,...,7?,.

e We assume dy,...,d, tid N(pq,07).

e We test Hy : uqg = 0, the hypothesis that the
mean difference between the treatments is 0,
versus Hy : ug # 0.

e Our test statistic is now just the one-sample ¢
(we have a single sample of differences):

. J—Mdo

 sa/Vn

which we compare against its distribution, ¢(n—

1).
e A 100(1 — @)% CI for the mean difference, g4,
is given by

t

d+ta(n—1)sa/vn
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Multivariate Generalization:

e The analogous multivariate scenario is when we
have a p—dimensional vector measured on each
of n subjects in two treatment groups:

z11; = variable 1 for i*® subj. getting trt 1

T12; = variable 2 for i*® subj. getting trt 1

T1p; = variable p for i*' subj. getting trt 1
T1; = variable 1 for i*" subj. getting trt 2

T99; = variable 2 for i*" subj. getting trt 2

T2,; = variable p for i! subj. getting trt 2

e For the i'® subject, we define a vector of differ-

ences:
dlz’ L11: — L2134
d27; L12; — L224
dpi L1pi — L2pi
for:=1,...,n
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e We assume that dq,...,d, tid Ny(pea, 2q).

e To test Hy : ug = 0 we know what to do:
Hotelling’s T? test. Compute

T? = n(d — pao)'S7"' (d — pao), in general
= n(_i’Sglc_i, for pgo =0

and compare with its distribution:

p(n —1)
n—p

T2N F(p)n_p)'

e Once we have framed the problem as a one-
sample problem (we have a single sample of
n p—vectors), then there is nothing new here.

Confidence regions can be formed as in chapter
D:

— A 100(1—a)% confidence region for puq con-
sists of all g such that

p(n —1) B
n(n_p)Fa(pan p)

(d—pa)'Sq" (d—pa) <
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— 100(1 — )% max t simultaneous confidence
intervals for the individual mean differences
pa; are given by

2
_ pn_]_ de
dji\/ ( >Fa(p,n—p) —2,

n—op n

where d; is the j element of d and sj is

the j*® diagonal element of Sq.

— The Bonferroni 100(1 — )% simultaneous
confidence intervals for the individual mean
differences uq, are given by

CZj :I:ta/(gp)(n— 1)“833,/7?,,2' =1,...,n.
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Example — Effluent Data:

Municipal wastewater treatment plants are re-
quired by law to monitor their discharges into rivers
and streams on a regular basis. Concern about the
reliability of data from one of these self-monitoring
programs led to a study in which samples of efflu-
ent water were divided and sent to two laborato-
ries for testing. One-half of each sample was sent
to the Wisconsin State Laboratory of Hygiene and
one-half of each sample was sent to a private com-
mercial laboratory. Measurements of biochemical
oxygen demand (BOD) and suspended solids (SS)
were obtained for the n = 11 samples from each lab.
The data are as follows:
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Commercial Lab State Lab

Sample T 115 (BOD) X192 (SS) X214 (BOD) T 22; (SS)

1 6 27 25 15
2 6 23 28 13
3 18 64 36 22
4 8 44 35 29
) 11 30 15 31
6 34 75 44 64
7 28 26 42 30
8 71 124 o4 64
9 43 o4 34 96
10 33 30 29 20
11 20 14 39 21

e Do the two labs agree? If not, how so?
e See handouts effluent.sas effluent.lst.

e From effluent.lst we see that T2 = 13.64. The
critical value for this test is
p(n—1) 2(10)

Fo(p,n—p)= ——F05(2,9) =9.47
n—op (p,n — p) 9 05(2,9)

using a significance level of 0.05.
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Conclusion: there is a significant mean differ-
ence between the measurements of the two labs.

Looking at the means, we see that the commer-
cial lab tends to produce lower BOD measure-
ments and higher SS measurements.

The normality assumption should be checked
for these data.

See example 6.1 in the text for further discus-
sion of this example.
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e It is good practice to compute the differences
di1,...,d;p for each sample member ¢ and com-
pute the paired T2 test as described above. This
allows checks of normality for each component
of the vector of differences.

e However, the paired T? test can be computed
another way by taking advantage of what we
know about linear combinations:

. /
Deﬁne X; = (51311@', L1124y +« « s Zl?lp?;, L2175y L2279 + « 73321971) .
Then x = (Z T1p, T Tap) and
115+ - -y L1pyL21y---9L2p
Sqi1 : Si2
S (pXp) ' (pXp)
5 % 9 — . - c. :
( p p) Sgl 822
(pXp) ) (pxp)

where S1; contains the variances and covariances of
the p variables measured on treatment 1, So5 con-
tains the variances and covariances of the p vari-
ables measured on treatment 2, and S12 = S%; con-
tains covariances between treatment 1 variables and
treatment 2 variables.
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If we define the matrix

Cpxop = (Ip|(_1)1p)

(| means combine together horizontally) then it is
easily established that

di:CXZ‘, ’1:21,...,7?,,
d=Cx, and Sq=CSC’

Thus T2 can be computed from X and S without
computing the differences:

T? = nx'C’(CSC’)"1Cx

Example — Effluent Data (Continued) See ef-
fluent.sas and efluent.lst.
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A Simple Repeated Measures Design:

A generalization of the univariate paired t—test sce-
nario occurs when a random variable is measured on
each of n subjects ¢ times, possibly under different
experimental conditions.

In this situation we have a vector of repeated mea-
sures

iqu'
for each subject ¢+ = 1,...,n. Here, for example,

To9; is the response for the i*" subject on the 2™
occasion (2°¢ treatment, perhaps).

In the univariate paired t—test we had ¢ = 2 and the
t— test could be performed by defining differences

di:C’XZ‘:(Cl Cg)<xlz:>

based on a contrast vector, ¢ = (1, —1)".
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The d;’s each have mean E(d;) = puqg = ¢'ux and
variance var(d;) = ¢/Xyc that we estimate by d =
¢'x and s% = ¢/Sgc, respectively. Our univariate
paired t— test statistic for Hy : uqg = 0 is

d—0  /nc'x
sa/vn /Sy
= /n(c'X)(c'Sxc) 1 (xXc)

We generalize this procedure to our repeated mea-
sures design where ¢ > 2 by considering contrasts
of the components of pu = E(x;). We can express
the null hypothesis of equal means across time (or
across treatments if the repeated measures corre-
spond to different treatments) as Hy : Cu = 0 if
we choose C so that

1 -1 0 --- 0 O 1 M1 — K2
o 1 -1 --- 0 0 p2 | B2 ps
Ao 0 o 1 -1/ \y, faet — fiq
c 1
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or

1P -1 0 - 0 M1 [l — 42

1 0o -1 --- 0 p2 | B ps

. 1 0 0 —1 N/ 1 — Mg
c 7

C must be a contrast matrix, meaning that it
must have ¢ — 1 linearly independent rows each of
which is (the transpose of) a contrast vector.

e A contrast vector is a vector which has com-
ponents that sum to 0.
11d
For x1,...,%X, ~ N,(u,¥) and C a contrast ma-
trix, an a—level test of Hy : Cu = 0 (equal means

across measurement occasions) versus Hy : Cu # 0
is: Reject Hy if

T? = n(Cx) (CSC') 1Cx




A 100(1 — a)% confidence region (ellipsoid) for a
contrast Cu (a vector) is given by the set of all Cpu
such that

n(Cx — Cu)' (CSC')"1(Cx — Cpu)

qg—1)(n—1)
n—q-+1

S( Folg—1,n—q+1)

Based on the max t approach, 100(1 — «)% confi-
dence intervals for single contrasts of the form c’u
(a scalar) are given by

_ —1)(n—1) c’Sc
x4+ | Fg—1n—qg+1
c'x \/ n—qt1 (g—1,n—q+1) -
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Example — Metabolism in the Brain:

Metabolic rates in the left and right thalamus
and the left and right frontal eyefield regions of the
brain were measured by positron emission tomogra-
phy for n = 17 normal subjects. These means and
covariance matrix were computed from the rates:

Thalamus Eyefield
Left Right Left Right
p = 1 2 13 fha

x' = 4.535 4.703 4.902 5.221
S = 2.0843 2.1698 1.9942 2.1361
2.3002 2.0823 2.2282

2.1783 2.3279

2.5412
e We’'d like to test the hypothesis that the mean

metabolic rate is the same in all four locations
of the brain.

If the means differ, where are the significant
differences?
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Here, there are three linearly independent treat-
ment contrasts of interest:

cip = (1 + p2) — (43 + f1a)
copt = (p1 + p3) — (p2 + pa)
cap = (1 — p2) — (3 — pa)

Interpretations:

cy: Difference between rates in the thalamus and
the frontal eyefield region.

cy: Difference between rates on the left and right
sides.

c3: Interaction contrast; Does left vs. right differ-
ence depend on region?

We arrange these contrasts in a matrix

c} 1 1 -1 -1
C=[c,|=|1 -1 1 -1
cl 1 -1 -1 1

and we test the hypothesis of equal means by testing
HO . C/,L = 0.
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e See handouts brainl.sas and brainl.lst.

o T2 = 41.92 exceeds the critical value 11.46,
so we reject the null hypothesis of equal mean
metabolic rates in the four sites.

To determine specifically where the significant dif-
ferences among the means are we form simultaneous
95% confidence intervals for cpp, 7 = 1,2, 3.

e From brainl.Ist we have the three intervals
(—1.79,0.021), (=0.77,—-0.21), (—0.11,0.41) based
on the max-t approach, and the three intervals
(—1.60,—.17), (—0.71,—0.27), (—0.055,0.36) based
on the Bonferroni approach. Assuming that the
three comparisons corresponding to c1, co, c3 were
all planned comparisons, the Bonferroni approach
is appropriate here and preferrable because of
its narrower intervals. Based on the Bonferroni
intervals, only the interval for c5u straddles 0.
Therefore, there are significant differences be-
tween the thalamus and eyefield regions and be-
tween the hemispheres, but there is not signifi-
cant evidence of an interaction between region
and hemisphere.
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e The above analysis of repeated measures based

on the T2 statistic does not assume any partic-
ular structure on the covariance matrix ..

If the covariance matrix can reasonably be as-
sumed to have a particular structure, more pow-
erful inferential techniques exist. In particular,
under the assumption that xq, ..., Xx,, each have
variance-covariance matrix > with the compound
symmetry structure:

L p p p
22,01/) p

=0 | . . A
p p p -1

the repeated measures design just discussed may
be analyzed as a randomized block design, with
subjects corresponding to blocks.
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Comparing Mean Vectors from 2 Populations

We can generalize the two sample ¢ test for a single
mean in each of two populations to the two sample
T? test for comparing two mean vectors.

Setup: We have two samples of multivariate obser-
vations of size ni; and no from two populations:

X115, X125+ - s X1n; X21,X22,...,X2n,

with sample means

ni no
_ 1 _ 1
Xlzn—gxli X2:n—EX2i
1 =1 2 =1
and sample variance-covariance matrices

1 &

S1 1 ;(Xlz’ — X1)(x1; — X1)’
1 &
So =n2 7 ;(X% — X9)(X2; — X3)'
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Assumptions:

1. X115+ -y X1ng Zfl{/ Np(,ul,El).

1d
2. X213y X2y " Np<[1,2722>.

3. Independent samples (X171, .. .,X1,, are indepen-
dent of X271y .- 7X2n2)-

4. Population covariance matrices are equal (37 =
Y9).

e We wish to test p1 = po versus pq; # o or,
more generally, Hy : @1 — o = 0g versus H; :

p1 — p2 7 Op.

e Assumptions are analogous to the univariate as-
sumptions of the two sample t—test. However,
notice that assumption 4 is much stronger in the
multivariate case. Assuming }»; = Yy requires
that p(p+1)/2 pairs of variances and covariance
are equal.
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We know that S; estimates X1 and S, estimates
Yo. Assuming 4, the two samples have a common
variance-covariance matrix X, say. S0, X1 = Yo =
Y, and S; and S, are both estimates of ..

Which estimate of > do we use?

Answer: We pool the two estimates S; and S, by
using Sp a weighted average of S1,S»

(n1 — 1>Sl + (’ng — 1)82
niy + Ng — 2

Sp =

(a weighted average because S; and S, are based
on different sample sizes).

The LR test statistic for Hg : 1 — o = dg is

T? = (X1 —%y—6)’ K ! + ! ) Sp]_l (X1—%2—6p)

n1 no

and we reject Hy for large values of T2.
e Notice 72 is a squared statistical distance be-

tween X1 — X, and the null value of p1 — po. If
the distance is large, we reject.
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e Notice that T? generalizes the one sample test
statistic which we also called T2.

How large must T? be to reject?

We can get the distribution of T2 by looking at the
form of the statistic.

e By assumption 3 the xq;’s and the x5;’s are in-
dependent so (ny—1)S; and (ng—1)Ss are inde-
pendent with Wishart distributions, W,(%, ni—
1) and W,(X,ny — 1), respectively.

e By property 2 of Wishart distributions (p. 72
of notes)

(n1 — 1)81 + (nz — 1)82 ~ Wp(E,nl + N9 — 2)

e We also know that X;, X5 are independent mul-
tivariate normals with the same variance co-
variance matrix, so linear combinations such as
X1 — X9 will be multivariate normal (result 4.8,
p.174 of text). Specifically,

1 1
)_(1_7_(2NNp</1'1_,u'27< + )E>
n1 no
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Combining these distributional results we see that
T? is of the form

T? = (N,(0,%)) (W,(%,d.f.)/d.f.)"1(N,(0,X))

SO

p(ni + ng — 2)
ni+ne—p—1

T? ~

F(p,ni+ns—p—1)

e Wereject Hy : 1 — o = g at significance level
o if

p(ny + ng — 2)
ni+neo—p—1

T? > Fo(p,ni +no—p—1)
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Example — Aging and Intelligence

Forty-nine elderly men participating in an in-
terdisciplinary study of human aging were classified
into the diagnostic categories “senile factor present”
and “no senile factor” on the basis of an intensive
psychiatric examination. The Wechsler Adult In-
telligent Scale (WAIS) had been administered to all
subjects by an independent investigator, and cer-
tain subtests showed large differences between the
groups. It was proposed that a test be made of the
hypothesis that the groups arose from populations
with a common mean vector, and if this hypothe-
sis was rejected, simultaneous confidence intervals
would be used to determine which individual sub-
test means were significantly different.

The pooled sample variance-covariance matrix in
this study was

11.2624 9.4060 7.1550 3.3791
13.5265 7.3784 2.5014

11.5796 2.6167

5.8133

Sp =

150



The sample means are given in the following table

Group

No Senile Senile

Factor Factor

Subtest ny = 37 nyg = 12
Information 12.57 8.75
Similarities 9.57 5.33
Arithmetic 11.49 8.50

Picture

Completion 7.97 4.75
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To test Hy : 1 — o = 0 we compute

2 = = \/ 1 1 - — —
T :(Xl—Xg) [(——I——) Sp] (Xl—Xz)
ni no

12.57 — 8.75\ '
| 9.57—5.33
| 11.49 — 8.50
7.97 — 4.75
12.57 — 8.75
y K 1 1)5 ]1 9.57 — 5.33
37 P 11.49 — 8.50
7.97 — 4.75

= 22.13

The critical value for a significance level of 0.05 is

p(ny + ng — 2)
Foz ’ —p—1
T (p,n1 +ng —p )
447
— (44 >Fo5(4 44) = (4.2727)(2.5837) = 11.04

so we reject the null hypothesis of equal mean vec-
tors at the .05 level.

To determine which pairs of subtest means dif-

fer we need to form simultaneous confidence inter-
vals around p1; — pe;, 5 =1,...,4.
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Confidence Regions:

We will also be interested in estimating g1 — o and
forming confidence regions.

A 100(1—a)% confidence region for p; — po is given
by the acceptance region of our test; i.e., the set of
all g1 — po such that

(X1 — %2 — ( )’ 1+18_1

1 2 M1 — M2 T P

X ()_(1 — X9 — (H’l - /'1'2)) < Fcrit
where
Foyy = 212~ 2)

ni+ng —p—1

e Confidence region is an ellipsoid

Fa(p7n1+n2_p_1)°

i. centered at X; — Xo;
1. with axes along ey, ..., e, the eigenvectors
of Sp;
iii. with the length along e; equal to

1 1
V Az\/( + ) Fcrit
ni no

where Aq,..., )\, are the eigenvalues of Sp.
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Simultaneous Confidence Intervals:

A general result for any and all linear combinations
a’(p1 — po) is available similar to the result we gave
in the one sample case. With probability 1 — «,

Xl_X2 :|: V crlt\/ ‘|'_ SPa

will cover a’(p1 — peo) for all a.

e As a special case, we have simultaneous confi-

dence intervals for p1; —p2;, 5 =1,...,p, given
by
(X Xo;)+ F ! + !
X P X . . - [ 8 . .
1y 27 crit n 1o P33

where sp ;; is the (4, 7)™ element of the pooled
sample variance-covariance matrix, Sp.
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As an alternative, we can base simultaneous con-
fidence intervals for p;; — p2; on the Bonferroni

method. The Bonferroni 100(1 — )% ClIs for the p
population mean differences are given by

(flj—fzj>:|:ta (2p)(n1 —|—n2—2) + SPjj
2

Example — Aging (Continued):
Based on our 72 test, we have already concluded

that the vector of WAIS subtest means differs be-
tween groups (senile factor present versus absent).

To form 95% simultaneous Bonferroni intervals for
M1 — K254, ] — 1,. . .,4, we need

ta (2p) (n1 + Nng — 2) — t.05 (37 + 12 — 2)
= 1.00 25(47) = 2.60.
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Our Bonferroni intervals are

1 1
12.57 — 8.75) £ 2.60 — 4+ — 11.2624
( ) 37 i 12 6

= 3.82 & (2.60)(1.11) = (0.92,6.72)

for the difference in mean scores on the information
test, and, similarly, we obtain the intervals

(9.57 — 5.33) + (2.60)(1.22) = (1.07,7.41)
(11.49 — 8.50) + (2.60)(1.13) = (0.054, 5.93)
(7.97 — 4.75) + (2.60)(0.80) = (1.14, 5.30)

for w12 — p22, w13 — pes, and w14 — pa4, Tespectively.

Conclusions: There are significant differences on all
four subtests with the “no senile factor” group con-
sistently outperforming the “senile factor present”
group. The largest difference between the groups is
on the similarities subtest.
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Example — Sparro Data:

Recall the sparrow data where, following a storm,
5 variables were measured on a sample of sparrows,
and their subsequent survival was tracked. The
variables were x; = total length, zo = alar ex-
tent, 3 = length of beak and head, x4 = length
of humerus, 5 = length of keel of sternum. Birds
1 21 survived, the remaining 28 birds died.

To test Hy : p1 = po, we compute T2. See
sparrow4.sas and sparrow4.lst.

e Out test statistic 72 = 2.82 which we compare
against F.i = 13.29. Clearly, T? is far from
significant based on a .05 level test. We con-
clude that there is not a difference between the
mean vectors of survivors and non-survivors.
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e Simultaneous confidence intervals for the mean
differences between the five components based
on the max ¢t approach are

(—4.89,2.80) (—5.95,4.81)
(—0.89,0.80) (—0.55,0.65) (—1.08,1.02)

These intervals all cover 0, which is not sur-
prising given the weakness of the evidence for
rejecting Hy : 1 = po provided by T2.

e The linear combination a’(X; — X2) with a pro-
portional to S5'(X; — X2) quantifies the largest
population difference. Therefore, if we reject
Hy : g1 — ps = 0 it makes sense to look at
the elements of the vector S5'(X; — %3). The
size of these elements tells us the relative im-
portance of the components of X; — X5 in the
linear combination of X; — X5 most responsible
for rejecting Hy.
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e In the sparrow example we did not reject Hj.
In the aging example we did, and the value of
a is proportional to

Sp' (X1 — %)
11.2624 9.4060 7.1550 3.3791\

13.5265 7.3784 2.5014
11.5796 2.6167

5.8133
12.57 — 8.75 0.026
9.57—5.33 | [ 0.208
11.49 —8.50 | — | 0.009
7.97 — 4.75 0.445

e The coe cients are all positive, indicating that
all components contributed in the same direc-
tion to rejecting Hy.

e The first and third coe cients are relatively
very small, indicating that in the linear com-
bination most responsible for rejecting Hy, dif-
ferences in subtests 1 and 3 played a relatively
minor role.
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About the Assumptions:

We assumed
e ultivariate normality of each sample.
e Equal covariance matrices.

These assumptions are unnecessary if we have large
sample sizes because of the following result:

If ny —p and ny —p are large, the statistical distance
L o1 1,
(X1 — X2 — (H1 — p2))’ —S1+ —Ss
ni no
X (X1 — X2 — (H1 — p2))

is approximately distributed as 2(p).
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Based on this result, for moderate to large sample
sizes we have the following approximate test statis-
tic for H() 1 = Mol

—1

1 1
T2 = ()_(1 — )_(2), —Sl + —SZ ()_(1 - )_(2>
n1 no

which we compare to 2(p).

Approximate 100(1 — «)% simultaneous CIs for all
linear combinations a’(p1 — o) are given by

1 1
a’(il — )_(2> + a(p> a’ —Sl + _S2 a
n1 no

For such a CI on p;; — pa;, choose a to have a 1 in
the j* position and 0’s elsewhere.

o Effects of nonnormality or unequal covariance
matrices are exagerrated by samples sizes nq
and no that differ greatly.
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ne- ay MA VA

In the univariate case we generalized the two sam-
ple t test for comparing two (univariate) means to
the one-way anova for testing the equality of several
means.

In the multivariate case, we generalize the two-sample
T? to the situation where we have several mean vec-
tors to compare. The method of analysis is known
as the multivariate analysis of variance, or AN A.

Recall the univariate one-way anova:

1. We have independent samples of size n1,ng,...,n
from populations or treatments. For the P
treatment we have a sample of univariate obser-
vations  1,...,T , each with mean p .

2. Each of the populations is normal.

3. All populations have common variance o2.
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We can express these assumption succinctly as a
statistical model.:

L j :U’—i_ 79 VIR 7j IR
jNN(0,0'2

This model says that the observation on the ;P
individual in the *" group, x ;, is equal to the group
mean plus some (positive or negative error. The
errors average out to 0 and have unknown variance

o?.

e ur model implies x ; ~ N(u ,0° .

We often reparameteri e our model by replacing
@ with pu +

Tj KTt

which just breaks the ! treatment mean g into
two parts: the grand mean across all treatments
(1 and an effect specific to the ® treatment (

e To uniquely define model parameters and their

estimates we impose the constraint >
0.
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Surprisingly, perhaps, to test a hypothesis about
means, Hy : uq 42 [ , We compare
varlances.

The idea comes from the following decomposition
of the total variability in the data:

or

SS SS 1t + S5

In words, this decomposition says that the total
variability in the data (SS would be the sample
variance if divided by >  — can be divided into
the variability of the treatment means around the
grand mean (SS ,; and the variability of the ob-
servations around their respective treatment means

(SS
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If the treatments means (the u ’s were all the same
(equal to to the grand mean p then the variability
quantified by SS .+ would be just error variance of
the same order as the residual error quantified by

SS .

ence to test H @ versus H  at
least one pair of means di ers we compare SS

and SS .

An o level test of H is Reject H if

SS e /(
S5 /(2

Equivalently instead of rejecting for large values of
we could reject for small values of

SS
+8S .:/SS  SS +8SS .




We usually summari e the analysis of variance in a
table

Source of Sum of d.f. ean
ariation Squares Squares
reatments SS ¢ S
Error SS S

2.
otal SS >

AN A

. We have independent samples of si e
from  treatments. or the " treatment we
have a sample of multivariate observations
» With population m a pu .

. Each of h sampl s is draw from a m 1 i-
v 1 om ldis ib io .

1 popl io shywv commo pop | io
v 1 c-cov 1 ¢ m ix 2.
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