
E.g., suppose we have a model with expectation function f(x,θ) = θ1/(θ2+
x) and we want ∂f(x,θ)/(∂θ2) evaluated at θ = (1, 1)T and x = 2. Then
the forward difference approximation is

∂f(x,θ)

∂θ2
≈ 1

h2

(
θ1

θ2 + h2 + x
− θ1

θ2 + x

) ∣∣∣∣∣
θ=(1,1)T ,x=2

where h2 =
√
ϵ(1 + |θ2|) =

√
2.2204e− 016(1 + 1) = 2.9802e− 008, so

∂f(x,θ)

∂θ2
≈ 1

2.9802e− 008

(
1

1 + 2.9802e− 008 + 2
− 1

1 + 2

)
= −0.1111111100763083

• The exact derivative is −1/9 = −.1111̄.

Central Difference Approximations:

Some improvement in the accuracy of numerical derivatives can be ob-
tained by using central differences rather then forward differences.

In the general set-up described above, the central difference approximation
is

∂g

∂θi
≈ g(θ + hiji)− g(θ − hiji)

2hi

• For central differences, a larger hi value is recommended: hi =
(ϵ)1/3(1 + |θi|).

In the example, the central difference approximation is

∂f(x,θ)

∂θ2
≈ 1

2h2

(
θ1

θ2 + h2 + x
− θ1

θ2 − h2 + x

) ∣∣∣∣∣
θ=(1,1)T ,x=2

= −0.1111111111129642

• Note the improved accuracy of the central difference approximation.
See NumDerivExamp.R for implementation of this example.

101

In nls() and gnls() numerical derivatives are used by default. However,
it is best to supply these functions with analytic derivatives instead. A
convenient way to do this is with the deriv() function.

• The deriv() function uses symbolic mathematics (as in Maple or
Mathematica) to produce the analytic derivates. This saves the user
from the (very) error-prone task of taking the derivatives him/herself.

For example, consider the model fit to log(Lens) in model m2rabbit.nls.
See handout Rabbit2.

• The Rabbit2 handout contains an R script rabbit2.R and its out-
put. It also contains a SAS program, rabbit1.sas, and its output,
rabbit1.lst. In rabbit2.R, we first demonstrate that a function can
be coded that represents the expectation function of the model. I
call this function m2rabbit.

• We can refit model m2rabbit.nls by using the m2rabbit() function.
This simplifies things slightly. (Later when we consider adding co-
variates to nonlinear models, we’ll see that this step is very handy.)

102

• An advantage to coding the function f(x,θ) = θ1 − θ2/(θ3 + x) as
m2rabbit(x,th1,th2,th3) is that we can add a derivative (gradient)
attribute to m2rabbit() so that it returns not only the function’s
value, but also the values of the partial derivatives with respect to
each parameter at each evaluation.

• This is done using the deriv() function. We can see what’s going on
by printing the redefined function m2rabbit and this function eval-
uated at some given values of Age and θ. See the R documentation
on deriv() for more information.

• Now if we refit the model using the m2rabbit() function, analytical
derivatives will be used because they are available as an output of
this function.

• In rabbit1.sas the same model is fit using SAS’ PROC NLIN. As of
version 8, PROC NLIN uses analytic derivatives by default. It used
to be the case that derivatives had to be coded into PROC NLIN
using der.parm statements.

• The automatic calculation of analytic derivatives with symbolic math
is a very helpful recent development. Mistakes in the calculation of
analytic derivatives by hand are very common, and the elimination of
this step by the software makes the fitting of nonlinear models much
more reliable. When using software that cannot provide analytic
derivatives, it is recommended that a symbolic math program such
as Maple be used to compute derivatives when possible.

• As you can see, PROC NLIN and the nls() function produce identical
results.

103

3. Starting Values:

For the G-N and other commonly used algorithms for fitting nonlinear
models, starting values of the parameters are needed. Bad starting values
can lead to slow or no convergence, or possibly convergence to the wrong
solution.

There are several methods for selecting starting values and often some
combination of these methods is necessary for a given problem:

1. Analysis of the Expectation Function.

Starting values can often be obtained by considering the behavior of
f(x,θ) as the x-values approach some limiting value (e.g., 0, ±∞).
This information is often used with the observed y-values.

E.g., if one of the parameters has an interpretation as the asymptote
in a growth model, then we can take the maximum y-value as an
initial guess of that parameter.

E.g., consider the simple logistic model

f(x,θ) =
θ1

1 + exp{(θ2 − x)/θ3}
.

As x → ∞, the denominator→ 1 which implies that θ1 is the limiting
value for large x. If this is an upper asymptote as in a growth model,
then take θ̂01 = ymax where ymax=the largest response.

In general, it may be possible to solve

yi = f(xi,θ)

for one or more elements of θ for certain well chosen pairs (yi,xi).

104

Another example: in the asymptotic regression model,

f(x,θ) = θ1 + θ2e
−θ3x,

letting x → ∞ we obtain the asymptote θ1, and letting x = 0 gives
the initial value θ1 + θ2. Therefore, we might take θ̂01 = ymax and

θ̂02 = y0 − ymax where y0 is the (observed or “expected”) y-value at
x = 0.

2. Analysis of Derivatives of the Expectation Function.

Sometimes the derivatives of f(x,θ) with respect to x are simpler
than f itself and can be solved for one or more components of θ.

Suppose x = x consists of just one variable and let x(1), . . . , x(n) rep-
resent the ordered (e.g., smallest to largest) x-values and y(1), . . . , y(n)

the corresponding y-values.

Then if we can solve

y(i) − y(i−1)

x(i) − x(i−1)︸ ︷︷ ︸
“empirical derivative”

=
∂f(x,θ)

∂x

∣∣∣∣
x=x(i)

for θj then take this solution as the initial value for θj .

For example: In the Michaelis-Menten model, f(x,θ) = θ1x
θ2+x , we

have
∂f(x,θ)

∂x

∣∣∣∣
x=0

=
θ1θ2

(θ2 + x)2

∣∣∣∣
x=0

=
θ1
θ2

In addition, θ1 has an interpretation as an upper asymptote since
limx→∞ f(x,θ) = θ1. Therefore, we take θ̂01 = ymax and solve

y(1) − y(0)

x(1) − x(0)
=

ymax

θ̂02

for θ̂02 to get an an initial value for θ2.

105

3. Transformation of the Expectation Function.

If the expectation function is transformably linear, then we can fit a
linear model to the transformed model (don’t need to worry about
error term to get roughly accurate parameter estimates) to get initial
values.

E.g., If the expectation function for response R is f(x,θ) = θ1x
θ2
1 xθ3

2

then the log transformation yields

log{f(x,θ)} = log(θ1) + θ2 log(x1) + θ3 log(x2).

Therefore, by fitting the linear regression model:

log(Ri) = β1 + β2 log(x1i) + β3 log(x2i), i = 1, . . . , n

we can obtain starting values:

θ̂01 = eβ̂1 , θ̂02 = β̂2, θ̂03 = β̂3.

4. Conditional Linearity.

In many model functions, one or more of the parameters are condi-
tionally linear. In that case, once starting values for the nonlinear
parameters have been obtained, then linear regression conditional
on the nonlinear parameters’ starting values can be used to obtain
starting values for the linear parameters.

For example: consider the asymptotic regression model y = θ1 +
θ2e

−θ3x. If a starting value θ̂03 is available, then a simple linear

regression of y on z = e−θ̂0
3x will yield starting values for θ1 and θ2.

106

5. Reducing Dimensions.

Usually, more than one of the above approaches are necessary and
are combined in succession. After an initial value of each successive
parameter has been obtained, the problem of obtaining starting val-
ues for all parameters is simplified because it has been reduced in
dimension.

E.g., in the last example, once θ̂03 has been obtained it becomes easier

to obtain θ̂01 and θ̂02 because the problem is conditionally linear.

Another example is provided by the method of exponential peel-
ing. This method is useful when the expectation function is a sum
of exponentials.

Consider the biexponential model

f(x,θ) = θ1e
−θ2x + θ3e

−θ4x

with θ1, θ2, θ3, θ4 assumed positive.

– Notice that in such a model the two pairs of parameters (θ1, θ2)
and (θ3, θ4) are exchangeable, meaning that the values of the
pairs can be exchanged without changing the value of f .

– This means that the parameters of the model are not identi-
fiable. To get around this we create an identifiable parame-
terization by requiring θ2 > θ4.

107

The following plot gives an example of a biexponential where θ =
(3.5, 4, 1.5, 1)T :

x

f(
x,

th
et

a)

0 1 2 3 4 5

0
1

2
3

4
5

A Biexponential Expectation Function

f=f1+f2
f1=3.5*exp(-4*x)
f2=1.5*exp(-x)

Because θ2 > θ4 the function behaves like a simple exponential
θ3e

−θ4x for large x, and like θ1e
−θ2x + θ3 for small x.

This suggests splitting the data into a portion corresponding to the
largest x values and the remaining portion corresponding to the
smallest x values. Then fit obtain starting values by fitting the com-
ponents as follows:

i. First fit the simple linear regression

log(yi) = α0 + α1xi,

for the portion of the data with the largest values of x and set
θ̂03 = eα̂0 and θ̂04 = −α̂1.

108

ii. Then calculate the residuals, ri = yi − θ̂03 exp(−θ̂04xi) for the
portion of the data with the smallest x values. Fit the simple
linear regression model

log(|ri|) = β0 + β1xi

and set θ̂01 = eβ̂0 and θ̂02 = −β̂1.

Example 1 — Rabbit Age and Eye Weight:

Again consider the model

yi = θ1 −
θ2

θ3 + xi
+ ei

where
y = log(eye lens weight)

x = age in days

From a plot of y versus x we saw that y reaches an asymptote as x gets
large.

As x → ∞, f(x,θ) → θ1 so we can take

θ̂01 = ymax = log(246.70) = 5.51

As x → 0, f(x,θ) → θ1−θ2/θ3. The minimum x value in the data was x =
15 for which there were three observations with y values log(21.66), log(22.75),
and log(22.30). We take their average, 3.10, to represent y when x is small.

Now solve

θ̂01 −
θ2
θ3

= 3.10

to get
θ2
θ3

= 5.51− 3.10 = 2.41

109

Since f is approximately linear near x = 0 we can examine

∂f(x,θ)

∂x
=

θ2
(θ3 + x)2

→ θ2
θ23

as x → 0.

The second smallest x value was x = 18 with a corresponding y value of
y = log(31.25). Therefore, we can solve

log(31.25)− 3.10

18− 15︸ ︷︷ ︸
empirical derivative

=
θ2
θ23

⇒ θ2
θ23

= .113

We now have the two equations in two unknowns:

θ2
θ3

= 2.41

θ2
θ23

= .113

which can be solved to get θ̂03 = 21.3 and θ̂02 = 51.4.

• So, our starting values are given by θ̂0 = (5.51, 51.4, 21.4)T .

110

Example — Pressure vs. Temperature in Saturated Steam:

Data:

Temperature Pressure

0 4.14
10 8.52
20 16.31
30 32.18
40 64.62
50 98.76
60 151.13
70 224.74
80 341.35
85 423.36
90 522.78
95 674.32
100 782.04
105 920.01

Let y =pressure, and x =temperature. Then the model we consider is

yi = θ1 exp{θ2xi/(θ3 + xi)}+ ei, i = 1, . . . , n = 14

where e1, . . . , en
iid∼ N(0, σ2).

Since f(0,θ) = θ1 we take θ̂01 = 4.14.

111

Now note that

yi
θ1

≈ exp{θ2xi/(θ3 + xi)}

⇒ log(yi/θ1) ≈
θ2xi

θ3 + xi
=

θ2
1 + θ3/xi

⇒ 1

log(yi/θ1)
≈ 1

θ2
+

θ3
θ2

1

xi

This suggests that we obtain starting values for θ2, θ3 by performing a
simple linear regression of 1/log(yi/θ1) on 1/xi for cases 2–14 (we need to
exclude x = 0).

• See handout Pressure1.

This simple linear regression yields

1

θ̂02
= .0553 ⇒ θ̂02 = 1/.0553 = 18.07,

and
θ̂03

θ̂02
= 13.28 ⇒ θ̂03 = 13.28θ̂02 = 240.03

so that θ̂0 = (4.14, 18.1, 240.1)T .

• A very convenient feature in the nlme library is the ability to define
self-starting models.

• We’ve already seen that it can be convenient to code the expectation
function as an R function, and use the deriv() function so that this
function returns not only the value of the expectation function, but
also the values of its partial derivatives. E.g., m2rabbit() returned a
gradient component as well as the function value.

112

• If we can code the process used to obtain starting values, we can
extend this idea so that the function returns its value, its gradient,
and appropriate starting values all automatically.

• In pressure1.R we create a self starting function SSPresMod(). The
first step is to code the function PresMod to return the expectation
function of the model and its derivatives. This is done with the
deriv() function.

• Next we code a function PresModInit() to automate the process
we just went through to obtain starting values. Then SSPresMod
is created by combining PresMod() with the initial value function
PresModInit() using the selfStart() function. See the R online help
for selfStart() and also see §8.1.2 of Pinheiro and Bates (2000) for
more information on creating self starting functions.

• Once we have created SSPresMod() we can check that it works by
asking it to produce starting values for our model and the observed
data. This is done with the getInitial() function and you can see that
SSPresMod() does return the values we obtained less automatically.

• We can now fit our nonlinear regression model using SSPresMod()
in the nls() function. We no longer have to specify starting values
because they are computed automatically. In addition, any new,
similarly-behaving data set can be fit with this model without com-
puting a new set of starting values “by hand”.

Several self starting functions for commonly used nonlinear regression
models (e.g., biexponential, Michaelis-Menten, many more) are included
in S-PLUS through the nlme3 library. Appendix C in Pinheiro and Bates
(2000, on reserve) contains descriptions of these self starting functions,
including details concerning how starting values are obtained and inter-
pretations of the expectation functions of the models. This appendix is a
very useful reference.

113

Example — Pasture Yield vs. Growing Time

Ratkowsky (1983) reports a small data set on pasture regrowth over time
following cutting. The data are as follows:

Growing Time Pasture Yield

9 8.93
14 10.80
21 18.59
28 22.33
42 39.35
57 56.11
63 61.73
70 64.62
79 67.08

We consider fitting a Gompertz Model to these data of the form

yi = θ1 − eθ2−θ3xi + ei, i = 1, . . . , n = 9,

where y = log(pasture yield), x =time, and e1, . . . , e9 are i.i.id mean zero
each with variance σ2.

Starting values:

First note that increasing yields over time imply that

0 <
∂f(x,θ)

∂x
= θ3e

θ2−θ3x, ⇒ θ3 > 0.

Therefore, as x → ∞, f(x,θ) → θ1, so θ1 is the upper asymptote. So, we
take

θ̂01 = log(67.08) = 4.21

Now to get other starting values, we could transform to linearity. However,
for illustrative purposes, we’ll do something else.

114

As x → 0, f(x,θ) → θ1 − eθ2 . So, plugging in θ̂01 for θ1 and min(y) =
log(8.93) = 2.19 for f(0,θ) we can solve the following equation for θ2

4.21− eθ2 = 2.19 ⇒ θ2 = log(4.21− 2.19) = .70

and take θ̂02 = .70.

Note that

ȳ = θ1 −
1

n

n∑
i=1

eθ2−θ3x + ē

≈ θ1 − eθ2−θ3x̄,

the approximation holding roughly because the plot of y versus x is ap-
proximately linear.

Substituting the initial values of for θ1 and θ2 and ȳ = 3.42 and x̄ = 42.56
we solve

3.42 = 4.21− e.70−θ3(42.56) ⇒ .70− θ3(42.56) = log(4.21− 3.42)

to get θ̂03 = .022.

• We use these starting values, θ̂0 = (4.21, .70, .022)T , to fit the Gom-
pertz model to these data in handout Pasture1.

4. Parameter Transformations:

In nonlinear regression models, choosing a “good parameterization” is a
much more significant and difficult problem than in linear regression.

Parameter transformations can be effective means to reduce the parameter-
effects nonlinearity of a model. This improves the linear approximation,
which increases the accuracy of approximate inference methods and speeds
convergence.

115

We will come back to the issue of decreasing parameter-effects nonlinearity
later. For now, we focus on parameter transformations

a. to enforce constraints on parameters; and

b. to speed convergence.

Constrained Parameters:

In most nonlinear models, parameters are restricted to regions that make
sense scientifically.

For example, in growth and yield models, asymptote parameters typically
must be positive; in exponential models, parameters in the exponent (often
with minus signs in front) must be positive.

Often, it is possible to ignore parameter constraints in the fitting process.
One simply checks the converged parameter estimates to ensure that they
are in their feasible regions. If so, and the estimated model fits the data
well, then the NLSE/MLE has been reached and there is no problem.

• It can happen, though, that during the iterations to fit the model,
parameter estimates can go “out of range”. This may slow or stop
the algorithm, or lead to convergence to incorrect solutions.

• A general solution to this is to use constrained optimization (maxi-
mization or minimization) rather than an unconstrained method like
G-N.

– E.g., for equality constraints, can use method of Lagrange mul-
tipliers. For inequality constraints (more common), fancier,
more difficult methods are necessary.

116

An easier approach is simply to reparameterize so that, under the reparam-
terization, the constraint is enforced.

• The most common use of this approach is to enforce positivity. If θ
must be positive, reparameterize to ϕ = log(θ). This ensures that
throughout the iterations, θ = eϕ remains positive.

• An interval constraint of the form

a ≤ θ ≤ b

can be enforced by a logistic transformation of the form

θ = a+
b− a

1 + e−ϕ
.

• Although less commonly used, one can even use a transformation
(see reference given on p.78 of Bates & Watts) to enforce an order
constraint of the form

a ≤ θj ≤ θj+1 ≤ · · · ≤ θk ≤ b

Besides scientific meaningfulness, a parameter constraint can arise to force
identifiability of a model.

For a nonlinear regression model

yi = f(xi;θ) + ei,

where the ei’s are i.i.d. with E(ei) = 0, var(ei) = σ2, the model is said to
be identifiable if

f(xi;θ) = f(xi; θ̃) implies θ = θ̃.

117

Recall this was not the case in the unconstrained biexponential model
because for θ = (1, 2, 3, 4)T and θ̃ = (3, 4, 1, 2)T ,

f(x,θ) = f(x, θ̃) = 1e−2x + 3e−4x

• This problem can be fixed by requiring

0 ≤ θ2 ≤ θ4

which can be done with the transformation

θ2 = eϕ2

θ4 = eϕ2(1 + eϕ4)

Another example of a nonidentifiable model:

f(x,θ) = exp(−θ2θ3xi) +
θ1
θ2

{1− exp(−θ2θ3x1)}x2.

Here, θ3 only occurs in the model through the product θ2θ3. Therefore, θ =
(cθ1, cθ2, θ3/c)

T gives the same value of f(x,θ) for any nonzero constant
c.

A solution is to reparameterize so that the model has only two (nonredun-
dant) parameters. Under the reparameterization, take

ϕ1 = θ2θ3, ϕ2 = θ1/θ2

to fix the problem and make the model identifiable.

118

Facilitating Convergence:

Two simple methods to facilitate convergence are centering and scaling.

By centering, we mean replacing the explanatory variables xi1, . . . , xim by
their deviations from their respective means, x̄1, . . . , x̄m.

For example, Bates and Watts suggest reparameterizing the exponential
model

f(x,θ) = θ1e
−θ2x (∗)

by replacing x by x− x̄. That is, (*) can be written as

f(x,θ) = θ1e
−θ2(x−x̄+x̄) = θ1e

−θ2x̄e−θ2(x−x̄) = ϕ1e
−ϕ2(x−x̄)

where we have reparameterized using

ϕ1 = θ1e
−θ2x̄, ϕ2 = θ2.

A centering reparameterization such as this can make the columns of the
derivative matrix V less collinear (linearly dependent) than they would be
otherwise and thus can stabilize the GN algorithm and facilitate conver-
gence.

119

It’s also often helpful to scale the parameters and the data to ensure good
conditioning of the derivative matrix. For example, if the model was

f(x,θ) = θ1e
−θ2x

with the response in the range 0 < y < 100 and the regressor x in the
range 0 < x < 1000, and θ1 ≈ 100 while θ2 ≈ 0.001, then it would be
prudent to write

f(x,θ) = 100ϕ1e
−ϕ2(x/1000).

This way both ϕ1 and ϕ2 are approximately 1 and the derivatives are of
similar magnitude.

• In linear and nonlinear regression, centering and scaling are help-
ful to reduce the multicollinearity (near linear dependence) among
the columns of the derivative matrix (X in the linear case, V in
the nonlinear case). This multicollinearity or ill conditioning
of the regression problem can be thought of as “approximate non-
identifiability.”

Ill-Conditioning:

Consider the linear model

y = Xβ + e, E(e) = 0, var(e) = σ2I.

• This model is identifiable (i.e., β is estimable) if and only if X is
of full rank. X is full rank just means that the columns of X are
linearly independent, or, mathematically, that Xa = 0 if and only if
a = 0.

120

If X is not of full rank (and so has linearly dependent columns), there
exists a vector c ̸= 0 so that Xc = 0 and hence

∥Xc∥2 = (Xc)T (Xc) = cT (XTX)c = 0

IfX has nearly linearly dependent columns then there exists a vector c ̸= 0
so that

∥Xc∥2 = cT (XTX)c ≈ 0

I.e., for any β there exists a β̃ ̸= β so that β − β̃ ̸= 0 and

∥X(β − β̃)∥2 = (β − β̃)T (XTX)(β − β̃) ≈ 0

⇒ ∥Xβ −Xβ̃∥2 ≈ 0

⇒ Xβ ≈ Xβ̃

• The model is identifiable if Xβ = Xβ̃ implies β = β̃. Under mul-
ticollinearity, we have just seen that we obtain approximately equal
expectation functions for distinct values β and β̃. Hence multi-
collinearity can be thought of as approximate nonidentifiability.

• Two measures of multicollinearity are the determinant of XTX and
the minimum eigenvalue of XTX. Both of these quantities will be
0 under linear dependence and will be close to 0 under approximate
linear dependence (or multicollinearity).

• When this happens XTX will be nearly singular (uninvertible) and
we say XTX is ill-conditioned.

121

Consequences:

a. Numerical Instability:

It’s possible to obtain two substantially different estimators β̂1 and
β̂2 that give nearly equal expectation functions: Xβ̂1 ≈ Xβ̂2. This
means it’s hard to find the “right” β̂.

This is minimized by using a good algorithm to obtained the LSE
(e.g., use the QR decompostion).

b. Large variances for some parameters (or for some linear combinations
of the parameters).

This can be seen from the fact that var(β̂) = σ2(XTX)−1 and
(XTX)−1 is equal to 1/ det(XTX) times some matrix. If det(XTX) ≈
0 then the elements of this var-cov matrix will blow up.

• In linear regression, the cure for multicollinearity is to eliminate one
or more of the explanatory variables.

In nonlinear regression, the matrixV(θ) plays the role ofX. If the columns

of V(θ) for θ near θ̂ are approximately linearly dependent, then we may
have

a. Numerical instability;

b. Large variances; and

c. Slow or non-convergence.

• In the nonlinear case, this ill-conditioning is difficult to correct be-
cause it could be due to

i. the data (as in the linear case); and/or

ii. the model.

122

Example — Corn Yield

The following table contains data on R, the mean dry kernel weight (4
plants) of corn, at various levels of x, the time since silking.

Time Since Silking Mean Kernel Weight

17.125 14.26
25.625 50.51
29.625 60.83
39.625 104.78
46.375 94.46
54.250 97.02
62.125 172.41

For these data we consider the model

yi = θ1 − θ4 log(1 + eθ2−θ3xi) + ei, i = 1, . . . , n = 7

where yi = log(Ri) and we make the usual error assumptions.

• This model is a four-parameter form of the Richards Model with
multiplicative error.

• See the handout corn1. Here, we attempt to fit the above model.
Methods for obtaining starting values for Richards models are dis-
cussed in Ratkowsky (1983, §8.3.3) and Seber & Wild (1989, §7.3.6),
but we ignore that issue in this example.

• In corn1, we use the gnls() function rather than the nls() function,
simply because it allows greater control over the fitting algorithm
and because the returnObject option allows the function to return
the “fitted model” at the end of the fitting algorithm, even if the al-
gorithm has not converged. The model we are fitting is an OLS-type
model, though, with homoscedastic, independent errors as usual.

123

• Notice that the algorithm did not converge. We could reduce the con-
vergence criteria in this model further and we’d see that the paramter
estimates would continue to jump around without settling down.

• Notice that at the point at which the algorithm stopped, the correla-
tions between the parameter estimates were very high in magnitude.
In particular, ˆcorr(θ̂2, θ̂4) = −1.000 (to three decimal places). Large
magnitude correlations like this are indicators of ill-conditioning and
often suggest that the model is overparameterized.

– As a rule of thumb, correlations > .99 in absolute value are
strong indicators of overparameterization.

• In corn1 we also compute the determinant and eigenvalues of
{V(θ̂)}TV(θ̂) taking θ̂ to be the value of θ when the G-N algorithm
stopped. The determinant is 4.65e-6 and the minimum eigenvalue is
2.61e-9, both tiny, indicating ill-conditioning.

• The solution here is to simplify the model. A four-parameter model
is overkill here. Four parameters are sometimes necessary in growth
curve models like the Richards model above to establish the shape
of the entire curve from beginning to end of the growth process. In
our data, we’re not seeing the convex part of the sigmoidal growth
curve, and we’re certainly not seeing all of the “tail” behavior, so we
really don’t have data appropriate to estimate parameters related to
the point of inflection and the asymptotes. Doing so is essentially
extrapolating from the data.

• A three-parameter version of this model arises by setting θ4 = 1.
The resulting model is a reparameterization of the 3-parameter lo-
gistic regression model. We succesfully fit that model in corn1 and
it appears to fit the data well.

124

Q: Why do high correlations among the θ̂j ’s indicate ill-conditioning?

A: Consider the linear case. There, it is not hard to show corr(β̂j , β̂k)
is equal to −1 times the partial correlation between xj and xk, the j

th and
kth explanatory variables, respectively.

• Recall that the partial correlation between xj and xk measures the
linear association between xj and xk after removing the effects of all
other explanatory variables.

• Therefore, | ˆcorr(β̂j , β̂k)| ≈ 1 means that xj and xk have almost per-
fect (positive or negative) partial correlation (i.e., they are collinear).

• The situation is somewhat more complex in the nonlinear case, but
the result is the same: large magnitude correlations among the θ̂j ’s
indicate collinearity among the columns of V(θ) and ill-conditioning
of the {V(θ)}TV(θ) matrix.

5. Alternative Fitting Algorithms:

There are several alternatives to the GN algorithm for finding θ̂, the value
of θ that minimizes

S(θ) = ∥y − η(θ)∥2.

125

A. Newton-Raphson Algorithm.

θ̂ satisfies the normal equation

∂S

∂θ
(θ̂) = 0.

where ∂S

∂θ
(θ̂) ≡ ∂S(θ)

∂θ

∣∣
θ=

ˆθ
.

Using a linear Taylor series approximation of ∂S

∂θ
(θ̂) we have

0 =
∂S

∂θ
(θ̂) ≈ ∂S

∂θ
(θ) +

∂2S

∂θ∂θT
(θ)(θ̂ − θ)

for θ close to θ̂.

Rearranging,

θ̂ − θ ≈ −
{

∂2S

∂θ∂θT
(θ)

}−1

︸ ︷︷ ︸
p×p

∂S

∂θ
(θ)︸ ︷︷ ︸

p×1

.

This approximation suggests the Newton-Raphson updating formula: Given
a starting value θ̂0, we update via

θ̂j = θ̂j−1 −
{

∂2S

∂θ∂θT
(θ̂j−1)

}−1
∂S

∂θ
(θ̂j−1), j = 1, 2, . . . , convergence,

to obtain θ̂.

• This approach is valid for any minimization/maximization problem.

126

In nonlinear regression,

S(θ) = {y − η(θ)}T {y − η(θ)} =
n∑

i=1

{yi − f(xi,θ)}2

so

∂S

∂θ
(θ) = −2

n∑
i=1

{yi − ηi(θ)}
∂f(xi,θ)

∂θ

= −2

∂f(x1,θ)

∂θ1
· · · ∂f(xn,θ)

∂θ1
...

. . .
...

∂f(x1,θ)
∂θp

· · · ∂f(xn,θ)
∂θp

 y1 − f(x1,θ)

...
yn − f(xn,θ)

= −2{V(θ)}T {y − η(θ)}

In addition, the second derivative matrix has (j, k)th element

∂2S(θ)

∂θj∂θk
=

∂

∂θk

(
∂S(θ)

∂θj

)
=

∂

∂θk

(
−2
∑
i

{yi − f(xi,θ)}
∂f(xi,θ)

∂θj

)

= 2
n∑

i=1

∂f(xi,θ)

∂θk

∂f(xi,θ)

∂θj
− 2

n∑
i=1

{yi − f(xi,θ)}
∂2f(xi,θ)

∂θj∂θk

or, in matrix notation, the entire second derivative matrix is

∂S(θ)

∂θ∂θT
= 2{V(θ)}T {V(θ)} − 2

≡D︷ ︸︸ ︷
∂{V(θ)}T

∂θ︸ ︷︷ ︸
a 3-dim array of derivatives

{y − η(θ)}

127

So in the context of nonlinear least squares regression, the Newton-Raphson
update is given by

θ̂j = θ̂j−1 +
(
{V(θ̂j−1)}T {V(θ̂j−1)} −D

)−1

{V(θ̂j−1)}T {y − η(θ̂j−1)}

Recall that the GN update was

θ̂j = θ̂j−1 +
(
{V(θ̂j−1)}T {V(θ̂j−1)}

)−1

{V(θ̂j−1)}T {y − η(θ̂j−1)}

• These algorithms are obviously very similar. As compared with NR,
the GN algorithm just replaces

∂S(θ)

∂θ∂θT
= 2{V(θ)}T {V(θ)} − 2D

by its expected value, 2{V(θ)}T {V(θ)}. That is, GN ignores the
term D, which has mean 0, in the NR update formula above.

• In a more general context, the GN modification of the NR algorithm
is often called Newton-Raphson with Fisher scoring, or sometimes
simply, the Fisher scoring algorithm.

• Advantage of GN: only requires first derivatives of the expectation
function.

• Advantage of NR: sometimes has better convergence properties than
GN.

• Often, the two algorithms will perform about the same.

128

B. Quasi-Newton Methods.

• The main drawback to the N-R method is having to compute the
second derivatives. QN methods avoid this by using a numerical
approximation to the second derivative matrix.*

• This approximation starts out crudely, but is updated (improved)
after each step of the algorithm to get progressively more accurate.

Let

H(θ) =
∂S

∂θ∂θT
(θ) and g(θ) =

∂S

∂θ
(θ)

(‘H’ for Hessian, ‘g’ for gradient).

In the NR algorithm we had the updating formula

θ̂j+1 = θ̂j − {H(θ̂j)}−1g(θ̂j).

In the QN algorithm we want to avoid computing second derivatives, so
we replace {H(θ̂j)}−1 by an approximating matrix Bj and use

θ̂j+1 = θ̂j −Bjg(θ̂j). (♡)

• At step 0, B0 is often taken to be something quite simple and crude,
such as B0 = I and then improved at each step of the algorithm.

How do we update the approximate inverse Hessian Bj?

* (or, to be more accurate, its inverse, which is really what is needed)

129

Note that a first-order Taylor approximation of the gradient vector gives

g(θ̂j+1) ≈ g(θ̂j) +H(θ̂j)(θ̂j+1 − θ̂j)

for θ̂j+1 close to θ̂j .

Rearranging, we have

{H(θ̂j)}−1{g(θ̂j+1)− g(θ̂j)} ≈ (θ̂j+1 − θ̂j)︸ ︷︷ ︸
depends on Bj

or
{H(θ̂j)}−1qj ≈ pj , (♠)

where qj = g(θ̂j+1)− g(θ̂j) and pj = θ̂j+1 − θ̂j .

• Note that (♠) holds exactly if S(θ) (the objective function) is quadratic
in θ (e.g., in a linear model).

The Quasi-Newton method uses (♠) to obtain an updated estimate of the
inverse Hessian of the form

Bj+1 = Bj +Ej (♢)

• Here, Ej updates Bj to give Bj+1 which is used as an estimate of
{H(θ̂j+1)}−1 for the next step of the algorithm .

Turning (♠) into an equality and substituting (♢), we get

(Bj +Ej)qj = pj (1)

130

Equation (1) now gives a means for choosing Ej , the update matrix to im-
prove our estimate of the inverse Hessian. There is no unique Ej satisfying
(1), but typically, Ej is taken to be of the form

Ej = auuT + bvvT

where auuT and bvvT are symmetric matrices each of rank one chosen so
that (1) is satisfied.

• QN methods with b = 0 are called rank one update methods, QN
methods with b ̸= 0 are known as rank two methods.

• Rank two methods are the most widely used, with the Davidon-
Fletcher-Powell (DFP) and, especially, the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) update methods most common in modern imple-
mentations of the QN method.

The BFGS update takes the form:

Ej =

(
1 +

qjTBjqj

pjTqj

)
pjpjT

pjTqj
− pjqjTBj +BjqjpjT

pjTqj
.

• As in the GN method, QN methods usually make use of a step size
λ. That is, instead of (♡), we update via

θ̂j+1 = θ̂j − λBjg(θ̂j).

where λ is chosen that ensures a decrease in the objective function
or, alternatively, a decrease in the length of the gradient vector.

• Typically, a line search is done to obtain a near optimal value of λ,
not just one that works. E.g., instead of just picking a λ value that
decreases the objective function, we attempt to find the λ value that
produces the greatest decrease in the objective function.

131

Comparisons with GN, NR:

– Speed of convergence: (slowest) GN≤QN≤NR (fastest).

– Difficulty of use: (easiest) GN=QN≤NR (hardest).

• Convergence of GN, QN approaches that of NR when S(θ) is ap-
proximately quadratic in θ.

• QN appropriate for a problem that is not highly nonlinear but where
second derivatives are tedious to calculate.

132

C. Steepest Descent.

Iterative methods for calculating θ̂ have the general form:

θ̂j+1 = θ̂j + δj ,

where the increment δj usually has 2 components:

i. the direction of the step dj ; and

ii. the length of the step, λj ;

where δj = λjdj .

• In GN algorithm, we chose λj so that

S(θ̂j+1) < S(θ̂j).

dj is a descent direction if

∂

∂λ
S(θ̂j + λdj)

∣∣
λ=0

< 0.

If dj is a descent direction, then for small enough λj , the sum of squares
will decrease. I.e.,

S(θ̂j + λjdj) < S(θ̂j).

Note that

∂

∂λ
S(θ̂j + λdj)

∣∣
λ=0

=
{
S′(θ̂j + λdj)

∣∣
λ=0

}T

dj =

{
∂

∂θ
S(θ̂j)

}T

dj︸ ︷︷ ︸
=(♣)

• The method of steepest descent says choose dj to minimize (♣)
(make it as negative as possible).

133

Equivalently, we can minimize

1

∥dj∥

{
∂

∂θ
S(θ̂j)

}T

dj

over all vectors dj .

By the Cauchy-Schwartz Inequality (|xTy| ≤ ∥x∥∥y∥ with equality iff
x = cy) we have ∣∣∣∣∣∣∣∣∣

{
∂

∂θ
S(θ̂j)

}T

dj︸ ︷︷ ︸
<0

∣∣∣∣∣∣∣∣∣ ≤ ∥dj∥∥ ∂

∂θ
S(θ̂j)∥.

Therefore, we have {
∂

∂θ
S(θ̂j)

}T

dj

∥dj∥
≥ −∥ ∂

∂θ
S(θ̂j)∥︸ ︷︷ ︸

lower bound

with equality if and only if dj is a multiple of − ∂

∂θ
S(θ̂j).

Thus, the steepest descent iteration becomes

θ̂j+1 = θ̂j − λ
∂

∂θ
S(θ̂j) (∗)

where λ is chosen to minimize S(θ̂j+1).

134

Note that in (*), ∂

∂θ
S(θ̂j) is just the gradient of S(θ) evaluated at θ̂j .

Thus, we have the following updates:

θ̂j+1 = θ̂j − λ[E{H(θ̂j)}]−1g(θ̂j) (GN)

θ̂j+1 = θ̂j − λ{H(θ̂j)}−1g(θ̂j) (NR)

θ̂j+1 = θ̂j − λBjg(θ̂j) (QN)

θ̂j+1 = θ̂j − λIg(θ̂j) (SD)

• Advantages to Steepest Descent: Relatively insensitive to the start-
ing values. May converge when GN and NR do not.

• Disadvantage: Can be (very) slow relative to other methods.

135

D. Levenberg-Marquardt Method.

If {V(θ)}T {V(θ)} is close to singular for θ near θ̂, the GN method may
become erratic. This problem can be diminished by a good algorithm for
obtaining the GN increment, but not completely solved.

One helpful approach is to modify the GN increment to

δj(k) ≡ [{V(θ̂j)}T {V(θ̂j)}+ kB]−1{V(θ̂j)}T {y − η(θ̂j)}

where B is a diagonal matrix and k is a constant called the conditioning
factor.

Two standard choices of B are

i. B = I (Levenberg); and

ii. B a diagonal matrix with diagonal elements taken from the diagonal
of {V(θ̂j)}T {V(θ̂j)} (Marquardt).

• When k = 0 this method (either choice of B) reduces to the G-N
method.

• For B = I and k → ∞ this method becomes steepest descent.

• Therefore, the LM method is a compromise between G-N and steep-
est descent.

To choose k, the following method is often used:

i. Start with small k.

ii. If S(θ̂0 + δ0(k)) < S(θ̂0), then decrease k on next iteration.

iii. If S(θ̂0 + δ0(k)) ≥ S(θ̂0), then increase k until (ii) occurs.

• For well-behaved problems, this approach will lead to k → 0 and the
method will behave like GN.

• For ill-conditioned problems, k will increase toward∞ and the method
will become a variant of steepest descent.

136

• Advantage: LM method is useful when {V(θ̂j)}T {V(θ̂j)} is ill-
conditioned.

• Disadvantage: None, really. This is a good default method.

E. Golub-Pereyra Algorithm for Partially Linear Models.

In partially linear models, the conditionally linear parameters can
be estimated by linear least-squares, conditional on the values of the
nonlinear parameters.

That is, if we partition θ as θ = (βT ,ϕT)T where β (p1 × 1) con-
tains the conditionally linear elements of θ and ϕ ((p− p1)× 1) the
remaining elements of θ, then we can write

η(θ) = η(β,ϕ) = A(ϕ)β

where A(ϕ) is an n × p1 matrix depending only on the nonlinear
parameters.

For fixed ϕ, we can estimate β as

β̂(ϕ)︸ ︷︷ ︸
depends on ϕ

= [{A(ϕ)}T {A(ϕ)}]−1{A(ϕ)}Ty

Golub and Pereyra formulated a version of the GN algorithm to
minimize the least-squares criterion expressed solely as a function of
ϕ:

S2(ϕ) = ∥y −A(ϕ)β̂(ϕ)∥2.

The nonlinear least squares estimator of θ is then θ̂ = (ϕ̂T , β̂(ϕ̂)T)T ,

where ϕ̂ is the minimizer of S2(ϕ).

• Advantages: Reduces the number of starting values needed. Reduces
the dimension of the nonlinear estimation.

• Disadvantages: Requires derivatives
∂A(ϕ)

∂ϕ
which can be compli-

cated. Only applies to partially linear models so is not a competitor
to the other methods in general.

137

Example — Hahn Data:

To illustrate the Golub-Pereyra algorithm, we consider data from
the National Institute of Standards and Technology (NIST) pertaining to
a study of the thermal expansion of copper. The data set contains the
following variables:

y = coefficient of thermal expansion

x = temperature (Kelvin)

and we consider the model

yi =
θ1 + θ2xi + θ3x

2
i + θ4x

3
i

1 + θ5xi + θ6x2
i + θ7x3

i

+ ei.

• See handout Hahn1. The data and fitted curve are displayed on the
last page of this handout.

• Starting values for these data were provided by NIST. We use these
starting values along with the usual G-N algorithm to fit the model
as m1Hahn.nls. The trace of this model fitting procedure reveals
that the G-N algorithm took 10 steps to converge, with objective
function S(θ̂0) = 2, 275, 330 at step 0.

• Alternatively, we can use the Golub-Pereyra algorithm to fit this
model by specifying the option, algorithm=plinear, in the call to
nls(). We also must change the model specification so that the right-
hand side is the derivative matrix of the linear parameters.

• Notice that when using the plinear algorithm in m2Hahn.nls, we
need only specify starting values for the nonlinear parameters (3 of
the 7). In fact, we can even get away with specifying the starting
values of 0 for these parameters and still achieve convergence to the
correct solution (see m3Hahn.nls).

• In addition, the plinear algorithm converges after only 7 iterations.
Furthermore, the objective function is S2(ϕ̂

0) = 52.38 at initial-
ization. This smaller objective function speeds and stabilizes the
algorithm.

138

Implementations of Various Fitting Algorithms:

S-PLUS/R: nls()

• GN (default)
• Golub-Pereyra (plinear)

SAS: PROC NLIN:

• GN (METHOD=GAUSS, the default)
• NR (METHOD=NEWTON)
• LM (METHOD=MARQUARDT)
• Steepest descent (METHOD=GRADIENT)

SAS: PROC NLMIXED:

• QN (TECHNIQUE=QUANEW, the default). Can control the line
search and update methods separately.

• NR w/o line search (TECHNIQUE=NEWRAP). Also uses “ridg-
ing”, which is essentially the technique of the LM method applied to
the Hessian.

• NR w/ line search (TECHNIQUE=NRRIDG) Also uses “ridging”.
• Several other optimization methods (trust region, double dogleg,
conjugate gradient, Nelder-Mead simplex).

In addition, there are a variety of equation solvers and function optimiz-
ers available that are generic; that is, they are not designed specifically
for nonlinear regression or even statistical estimation problems, but are
general tools. Nevertheless, they can be quite useful.

• In R, the function optim() will do general function optimization via
either QN, Nelder-Mead, or conjugate-gradient methods. Also avail-
able for S-PLUS in the MASS library.

• In S-PLUS, the function nlmin() implements the QN method using
numerical derivatives for the gradient, and nlminb() uses trust-region
optimation.

139

• Matlab has an optimization toolbox with several different functions
including fsolve (equation solving), fminunc (unconstrained mini-
mization), and fmincon (constrained minimization). fminunc does
unconstrained optimization via the QN method.

6. Obtaining Convergence

When using any iterative method, one of the following occurs:

1. Convergence to “reasonable” parameter estimates.

2. Convergence to “unreasonable” parameter estimates or divergence
to extreme values (e.g., values toward ±∞).

3. Failure of the algorithm to converge.

Under outcome 2, divergence to extremes is typically easy to identify as
an incorrect solution. Convergence to a local minimum of the objective
function can be a bit harder to detect. These problems are typically due
to

a. incorrectly entered data; or

b. incorrectly entered, or otherwise incorrect, starting values.

140

Suppose we converge to a parameter estimate θ̂. Is it a reasonable value
for θ?

To answer this:

1. Use our knowledge of the subject matter/science of the problem.

2. Plot the estimated (fitted) expectation function f(x; θ̂) along with
the observed data.

– If x = x is one-dimensional, then plot f(x, θ̂) as a function of
x.

– If x is multi-dimensional, then plot the fitted values ŷ = f(x; θ̂)
vs. each component of x along with the observed data.

Example — Pressure vs. Temperature in Saturated Steam

• See pressure1.sas. Recall we considered a model of the form

presi = θ1 exp{θ2tempi/(θ3 + tempi)}+ ei

• In pressure1.sas we fit that model again using “bad” starting values:
θ̂0 = (.1, .1, .1)T . Although these starting values lead to divergence

in nls(), in PROC NLIN we converge to θ̂ = (13.89, 3.88e10, 9.65e11)T .
Recall that using “good” starting values, the parameter estimate was
θ̂ = (5.27, 19.72, 295.00)T .

• By plotting the fitted curve under each parameter estimate, we see
that the latter estimate (from the “good” starting values) fits the
data best. Often, spurious converged parameter estimates will give
much worse fits than the correct parameter estimates.

• Here, the best criterion to choose between the parameter estimates
is scientific reasonableness, but fit also plays a role.

141

• If the algorithm converges to an “unreasonable” estimate, the most
likely reason is bad starting values.

• It is a good idea to plot f(x, θ̂0), the curve generated by the starting
values, to judge the quality of those starting values.

Outcome 3, failure to converge can be a much more stubborn problem.
Again, it may be due to any of several problems:

a. Bad, or incorrectly specified starting values.

b. the expectation function and/or derivatives have been incorrectly
coded.

c. {V(θ)}TV(θ) is singular or nearly singular for θ near θ̂; or

• If (a) starting values are good, and (b) the model and its derivatives
are correct, then it can be shown that (c) {V(θ)}TV(θ) must be
singular, or nearly so.

§3.6, p.86 of Bates & Watts provides a useful list of questions to ask/things
to check when convergence is a problem:

• Is the expectation function correctly specified and coded?
• Are the derivatives correctly specified and coded?
• Are the data entered correctly and are they “reasonable”?
• Are the response and explanatory variables correctly identified?
• Do the starting values correctly identified with the corresponding
parameters?

If the answer to all of these questions is yes, then tracing the details of the
fitting algorithm can help diagnose the problem (e.g., use the trace=T or
verbose=T options in nls() and gnls(), respectively).

142

Other points to consider:

• Are the data rich enough to fit the model that you have specified?
The model may have parameters that describe features of the ex-
pectation function that the data don’t reveal (e.g., an asymptote
parameter when no data are collected in the asymptotic region of
the curve). In this case, simplification of the model may be neces-
sary.

• If the estimation algorithm sends parameter values into infeasible
regions, then reparameterization of the model may help.

• For large problems, it is often difficult to fit the final model on the
first try, but success may be achieved by building up gradually from
smaller, simpler models to the eventual large final model.

– E.g., if the data set involves data from several subjects, try fit-
ting the model to data from one or two subjects first, then add
in subjects gradually, refitting several times to progressively
bigger data sets.

– Or if the model involves many parameters, it may be fruitful
to first fit a simplified model with fewer parameters and then
introduce additional parameters one step at a time.

143

7. Model Extensions — Heteroscedasticity and Correlation.

As in the linear regression model, it is possible to relax the assumption
e ∼ N(0, σ2I) to account for heteroscedasticity and correlation among the
errors/responses.

Consider the nonlinear regression model

y = f(X,θ) + e, e ∼ Nn(0, σ
2Λ) (†)

where Λ is a known, positive-definite matrix. Here,

f(X,θ) =

 f(x1,θ)
...

f(xn,θ)

 , X =

xT
1
...
xT
n

 .

Because Λ is positive definite (the matrix version of a number being posi-
tive), it has an invertible square root Λ1/2 with inverse Λ−1/2 such that

Λ = ΛT/2Λ1/2 and Λ−1 = Λ−1/2Λ−T/2.

144

Let
y∗ = Λ−T/2y,

f∗(X,θ) = Λ−T/2f(X,θ)

e∗ = Λ−T/2e

Then we can premultiply both sides of our original model (†) to get an
equivalent transformed model

y∗ = f∗(X,θ) + e∗, e∗ ∼ Nn(Λ
−T/20, σ2Λ−T/2ΛΛ−1/2) = N(0, σ2I)

(∗)

Since this model is of the homoscedastic, uncorrelated form for which
nonlinear least squares is appropriate, we can fit model (†) by simply
applying (ordinary) NLS to (*). That is, choose θ to minimize

∥y∗ − f∗(X,θ)∥2 = {y∗ − f∗(X,θ)}T {y∗ − f∗(X,θ)}
= {y − f(X,θ)}TΛ−1{y − f(X,θ)},

which is known as the generalized least-squares criterion.

The major limitation of this approach is that it is unusual that we know
Λ. Typically, we don’t know Λ, although it will often be the case that we
will be willing to make an assumption about the form of Λ.

• That is, we will often be willing to assume that Λ = Λ(λ) is a function
of an unknown parameter λ typically of much smaller dimension than
the number of non-repeated elements of Λ (n(n+ 1)/2).

• Under such an assumption, the model parameters are now θ,λ, and
σ2.

There are a variety of methods that can be used to estimate such an
extended nonlinear regression model, but for now, we focus on maximum
likelihood estimation.

145

ML Estimation in the Extended Nonlinear Regresison Model:

Recall that in ML estimation, we choose as our estimator of a parameter,
the value that minimizes the joint probability density function of the data,
viewed as a function of the parameter.

For the model (†), the joint density of y is a multivariate normal density.
Thus the loglikelihood function is

ℓ(θ, σ2,λ;y) = −1

2

{
n log(2πσ2) + log det{Λ(λ)}+ ∥y∗ − f∗(X,θ)∥2

σ2

}
.

For fixed θ and λ, the maximum likelihood estimator of σ2 is

σ̂2(θ,λ) =
1

n
∥y∗ − f∗(X,θ)∥2.

Plugging this value into the loglikelihood ℓ(θ, σ2,λ;y) we obtain the profile
likelihood which is the log likelihood as a function of θ and λ only:

pℓ(θ,λ;y) ≡ ℓ(θ, σ̂2(θ,λ),λ;y)

= −1

2

{
n[log(2π/n) + 1] + log det{Λ(λ)}+ n log ∥y∗ − f∗(X,θ)∥2

}

146

The MLEs of θ and λ are obtained by maximizing pℓ(θ,λ;y) with respect
to these parameters. This is done by alternating between fixing λ and
maximizing w.r.t. θ and fixing θ and maximizing w.r.t. λ. This procedure
is iterated to convergence.

That is, at the kth iteration, we fix λ at its current estimate λ̂k−1 and
maximize pℓ(θ, λ̂k−1;y) w.r.t. θ. Note that the resulting maximizer, θ̂k

is the minimizer of

∥y∗,k−1 − f∗,k−1(X,θ)∥2 = ∥{Λ(λ̂k−1)}−T/2{y − f(X,θ)}∥2

where λ̂k−1 is fixed. So, this step is just a usual nonlinear least squares
problem which can be solved by the G-N method.

Then we fix θ at θ̂k and obtain λ̂k by minimizing pℓ(θ̂k,λ;y) w.r.t. λ.

We then repeat these steps until convergence.

The MLE of σ2 can be obtained at convergence as σ̂2 = σ2(θ̂, λ̂) (by

simply plugging in the MLEs θ̂, λ̂ into the formula from the previous
page). However, to reduce the bias of this estimator, we use instead and
MSE-type estimator:

σ̃2 =
∥Λ̂−T/2{y − f(X, θ̂)}∥2

n− p
,

where Λ̂ = Λ(λ̂).

Inference for θ is based on “classical” asymptotic theory for ML estimation.
The asymptotic distribution of θ̂ is

θ̂
a∼ Np

(
θ, σ2

[
{V(θ)}TΛ−1V(θ)

]−1
)

with var-cov matrix that can be consistently estimated as

ˆavar(θ̂) = σ2
[
{V(θ̂)}T Λ̂−1V(θ̂)

]−1

In addition, n−p
σ2 σ̃2 a∼ χ2(n − p) and θ̂ and σ̃2 are asymptotically inde-

pendent, so the usual approximate F and t tests for inference on θ can be
performed.

147

We can take advantage of this methodology to fit a much broader class of
nonlinear models than we have so far considered. To describe this broader
class, it’s convenient to decompose var(e) = σ2Λ as follows:

var(e) = σ2Λ = σ2V1/2CV1/2

where

V1/2 =
1

σ

√
var(e1) 0 0 · · · 0

0
√
var(e2) 0 · · · 0

...
...

...
. . .

...
0 0 0 · · ·

√
var(en)

and

C = corr(e) =

1 corr(e1, e2) corr(e1, e3) · · · corr(e1, en)

corr(e2, e1) 1 corr(e2, e3) · · · corr(e2, en)
...

...
...

. . .
...

corr(en, e1) corr(en, e2) corr(e1, e3) · · · 1

Heteroscedasticity specification: We assume, for now, that

var(ei) = σ2g2(vi, δ)

where vi is a vector of variance covariates, δ is a vector of variance param-
eters to be estimated (part of λ), and g2(·) is a known variance function.

• Later, we will allow that g2(·) depend also on µi = E(yi), the mean
response, but that will take us out of the context of ML estimation.

148

Correlated errors are often appropriate when there is some temporal or
spatial dependence among the observations.

For example, suppose we have data on CO2-uptake in plants measured
over a one hour period in which the plant was exposed to different light
intensities. Suppose these measurements were taken during consecutive
one hour periods. E.g., suppose our data are as follows:

Plant CO2-uptake Light Intensity Time (hrs)

1 0 0 1
1 .33 20 2
1 2.5 80 3
1 . 120 4
1 6.1 150 5
1 6.3 250 6
2 0 0 1
...

In such a situation, we may expect there to be a serial dependence structure
to the errors, where observations close together in time are correlated with
the strength of the correlation decreasing with the time lag.

E.g., we may use an Autoregressive structure of order 1 (AR(1)) where
corr(ei, ej) = ρ|ti−tj | where ti is an integer-valued measurement time for
response yi.

149

Correlation Specification: In general, our correlation model will be

corr(ei, ej) = h{d(pi,pj),ρ}

where ρ is a vector of correlation parameters, h(·) is a known correlation
function, pi,pj are position vectors (often scalars for serial (time) corre-
lation) for observations yi,yj , and d(·, ·) is a known distance function.

• The correlation function h(·) is assumed continuous in ρ, returning
values in [−1,+1]. In addition, h(0,ρ) = 1, so that observations that
are 0 distance apart (identical observations) are perfectly correlated.

• In our example above, pi = ti, d(ti, tj) = |ti − tj | and ρ was a scalar
ρ.

• Vector valued positions pi arise when modeling spatial data. E.g.,
pi could be bivariate containing the longitude and latitude of yi.

A wide variety of models can be specified within this general framework
and fit using ML estimation as described above.

These models all assume var(e) = σ2Λ(λ) where the variance-covariance
parameter λ consists of two parts: δ, the variance parameter; and ρ, the
correlation parameter. That is, λ = (δT ,ρT)T .

150

Variance Functions Available in the nlme Software (e.g., in gnls()):

• Variance functions in the nlme software are described in §5.2.1 in
Pinheiro and Bates (2000) (see also ?varClasses in the nlme docu-
mentation). Here, we give only brief descriptions.

1. varFixed. The varFixed variance function is g2(vi) = vi. That is,

var(ei) = σ2vi,

the error variance is proportional to the value of a covariate. This is
the common weighted least squares form.

2. varIdent. This variance specification corresponds to different vari-
ances at each level of some stratification variable s. That is, suppose
si takes values in the set {1, 2, . . . , S} corresponding to S different
groups (strata) of observations. Then we assume that observations in
stratum 1 have variance σ2, observations in stratum 2 have variance
σ2δ1, . . ., and observations in startum S have variance σ2δS .

That is,
var(ei) = σ2δsi , so that g2(si, δ) = δsi

where, for identifiability we take δ1 = 1.

151

3. varPower. This generalizes the varFixed function so that the er-
ror variance can be a to-be-estimated power of the magnitude of a
variance covariate:

var(ei) = σ2|vi|2δ so that g2(vi, δ) = |vi|2δ.

The power is taken to be 2δ rather than δ so that s.d.(ei) = σ|vi|δ.

A very useful specification is to take the variance covariate to be the
mean response. That is,

var(ei) = |µi|2δ

However, this corresponds to g2(µi, δ) = |µi|2δ depending upon the
mean. Such a model is fit with a variant of the ML estimation
algorithm. However, this technique is not maximum likelihood, and
indeed ML estimation is not recommended for such a model. Instead
the method is what is known as pseudo likelihood estimation.

4. varConstPower. The idea behind this specification is that varPower
can often be unrealistic when the variance covariate takes values
close to 0. The varConstPower model specifies

var(ei) = σ2
(
δ1 + |vi|δ2

)2
, δ1 > 0.

That is, for δ2 > 0 (as is usual), the variance function is approxi-
mately constant and equal to δ21 for values of the variance covariate
close to 0, and then it increases as a power of |vi| as vi increases in
magnitude away from 0.

5. varExp. The variance model for varExp is

var(ei) = σ2 exp(2δvi)

6. varComb. Finally, the varComb class allows the preceding variance
classes to be combined so that the variance function of the model is
a product of two or more component variance functions.

152

Correlation Structures Available in the nlme Software (e.g., in gnls()):

• nlme includes correlation structures to account for time dependence
(serial correlation structures) and spatial dependence (spatial corre-
lation structures). It also has a couple of generally applicable corre-
lation structures.

• Correlation structures in the nlme software are described in §5.3 in
Pinheiro and Bates (2000) (see also ?corClasses in the nlme docu-
mentation). Here, we give brief descriptions of the serial and general
correlation structures.

Serial Correlation Structures:

The work-horse class of models in time-series analysis is the class of Auto-
regressive-Moving Average (ARMA) models.

We will apply these models to the errors, ei, but for notational convenience
let’s index e by t to indicate time.

In an Autoregressive (AR) model, we assume the current observation et
is a linear function of previous observations plus “white noise” (a mean
zero, constant variance error term):

et = ϕ1et−1 + · · ·+ ϕpet−p + at, E(at) = 0, var(at) = σ2.

• The number of previous observations on which et depends, p, is called
the order of the process and we write AR(p).

• The simplest, and practically most useful, AR model is an AR(1):

et = ϕet−1 + at, where −1 < ϕ < +1.

• For an AR(1) model,

corr(et, es) = ϕ|t−s|

and ϕ represents the correlation between two observations one time
unit apart.

153

A Moving-Average model is one in which the observation et at time t is a
linear combination (weighted average, in some sense) of past independent
and identically distributed white noise error terms plus a current time
white noise error:

et = θ1at−1 + · · ·+ θqat−q + at

• The number of past errors on which et depends is the order of the
process, so above we have an MA(q) process.

• Again, an order 1, in this case MA(1), process is often useful. For
an MA(1),

corr(et, es) =

{
1, if s = t;
θ1/(1 + θ21) if |s− t| = 1; and
0 otherwise.

• In general, MA(q) processes have nonzero correlation for observa-
tions ≤ q time units apart and 0 correlation for observations > q
time units apart.

Combining an AR(p) process with a MA(q) process we get an ARMA(p, q)
process:

et =

p∑
i=1

ϕiet−i +

q∑
j=1

θjat−j + at.

• It is always possible to model any autocovariance structure to an
arbitrarily small level of precision with a high enough order AR or
MA process. Often, we will find that a very low order AR, MA, or
ARMA model will suffice.

154

1. corAR1. This correlation structure is specified as corAR1(value,
form = one-sided formula), where value specifies an (optional) inital
value for estimating the AR(1) parameter ϕ and one-sided formula
is a formula of the form:

∼ covariate|Groupingvariable

Here, the covariate is an integer-valued time index and |Groupingvariable
is an optional group specification. Groups are specified to be units
of observations on which repeated measurements through time are
taken.

• For example, in the example CO2-uptake example above, the speci-
fication corAR1(.8, form = ∼ time | Plant) would yield the following
correlation matrix for plant 1:

C =

1 ρ ρ2 ρ4 ρ5

1 ρ ρ3 ρ4

1 ρ2 ρ3

1 ρ
1

with initial value of .8 for ρ.

2. corCAR1. This correlation structure is a continuous-time version
of an AR(1) correlation structure. The specification is the same as
in corAR1, but now the covariate indexing time can take any non-
negative non-repeated value and we restrict ϕ ≥ 0.

3. corARMA. This correlation structure corresponds to an ARMA(p, q)
model. AR(p) and MA(q) models can be specified with this function,
but keep in mind that the corAR1 specification is more efficient than
specifying corARMA with p = 1 and q = 0.

We can specify an ARMA(1,1) model with initial values of ϕ =
.8, θ = .4 via corARMA(value = c(.8,.4), form =∼ covariate|Groupingvariable,
p=1, q=1).

155

General Correlation Structures:

1. corCompSymm. In this structure,

corr(ei, ej) =

{
1 if i = j; and
ρ if i ̸= j.

That is, the correlation between any two distinct observations is
the same. Like many of the correlation structures, this structure
is often useful within groups. For our example, the specification
corCompSymm(value=.3, form = ∼ 1 | Plant) defines the correlation
matrix

C =

1 ρ ρ ρ ρ

1 ρ ρ ρ
1 ρ ρ

1 ρ
1

with initial value of .3 for ρ.

2. corSymm. Specifies a completely general correlation structure with
a separate parameter for every non-redundant correlation. E.g., in
our example corSymm(form = ∼ 1 | Plant) specifies the correlation
matrix

C =

1 ρ1 ρ2 ρ3 ρ4

1 ρ5 ρ6 ρ7
1 ρ8 ρ9

1 ρ10
1

where initial values for ρ can be supplied with an optional value=
specification.

156

Spatial Correlation Structures:

• A classic reference on spatial statistics is Cressie, Statistics for Spa-
tial Data. The following material is based on Pinheiro and Bates
(2000, §5.3), who base their treatment on material in Cressie’s book.

Let ep denote the observation (error term in our nonlinear model) corre-
sponding to position p = (p1, p2, . . . , pr)

T .

• Often r = 2 and p = (p1, p2)
T gives two dimensional coordinates.

Time series correlation structures are typically described by their auto-
correlation function (which we’ve denoted h(·) above). Spatial correlation
structures are usually described by their semivariogram.

For a given distance function d(·), the semivariogram is a function γ of
the distance between two points ep and eq say, and a parameter ρ, that
measures the association between two points that distance apart:

γ{d(ep, eq),ρ} =
1

2
var(ep − eq)

We assume the observations have been standardized to have E(ep) = 0 and
var(ep) = 1 for all p. Such a standardization does not alter the correlation
structure.

In that case, it is easy to see the relationship between the semivariogram
γ(·) and the autocorrelation function h(·):

γ(s,ρ) = 1− h(s,ρ).

From this relationship it is clear that observations 0 distance apart have
h(0,ρ) = 1 and thus γ(0,ρ) = 0. The autocorrelation function h increases
continuously to 1 as the distance decreases to 0. Hence the semivariogram
increases continuously to 0 as distance decreases to 0.

157

In some applications it is useful to violate this by introducing a nugget
effect into the definition of the semivariogram. This nugget effect is a
parameter c0 that forces γ(0,ρ) = c0 where 0 < c0 < 1 rather than
γ(0,ρ) = 0 when the distance between the observations is 0.

The following spatial correlation structures are implemented in the nlme
software in R. All have a scalar-valued correlation parameter ρ. This
parameter is known as the range in the spatial literature.

1. corExp. (Exponential) This structure corresponds to the semivari-
ogram

γ(s, ρ) = 1− exp(−s/ρ)

and the autocorrelation function h(s, ρ) = exp(−s/ρ).

2. corGauss. (Gaussian) This structure corresponds to the semivari-
ogram

γ(s, ρ) = 1− exp{−(s/ρ)2}

and the autocorrelation function h(s, ρ) = exp{−(s/ρ)2}.

3. corLinear. (Linear) This structure corresponds to the semivariogram

γ(s, ρ) = 1− (1− s/ρ)1{s<ρ}

and the autocorrelation function h(s, ρ) = (1 − s/ρ)1{s<ρ}. Here
1{A} represents the indicator variable that equals 1 when condition
A is true, 0 otherwise.

4. corRatio. (Rational Quadratic) This structure corresponds to the
semivariogram

γ(s, ρ) =
(s/ρ)2

1 + (s/ρ)2

and the autocorrelation function h(s, ρ) = {1 + (s/ρ)2}−1.

5. corSpher. (Spherical) This structure corresponds to the semivari-
ogram

γ(s, ρ) = 1− {1− 1.5(s/ρ) + .5(s/ρ)3}1{s<ρ}.

158

• A nugget effect can be added to any of these structures. With a
nugget effect c0, the semivariogram with the nugget effect γnugg(·) is
defined in terms of the semivariogram without the nugget effect γ(·)
as follows:

γnugg(s, c0, ρ) =

{
c0 + (1− c0)γ(s, ρ), if s > 0; and
0, otherwise.

• When using the above spatial correlation structures, the user can
choose between distance metrics. Currently implemented distance
metrics are Euclidean distance, d(ep, eq) = ∥p−q∥ =

√∑r
i=1(pi − qi)2,

Manhattan distance, d(ep, eq) =
∑r

i=1 |pi − qi|, and maximum dis-
tance, d(ep, eq) = maxi=1,...,r |pi − qi|.

• One can get a feel for these various semivariogram models by exam-
ining them as functions of distance for different choices of the range
parameter ρ and the nugget effect c0. The 5 semivariograms listed
above are plotted below for ρ = 1, c0 = .1.

159

Q: How do we choose a correlation structure?

A: This is a hard question that would be the focus of several weeks worth
of study in a time series or spatial statistics course.

In a regression context, inference on the regression parameters is the pri-
mary interest. We need to account for a correlation structure if one exists
to get those inferences right, but we’re typically not interested in the cor-
relation structure in and of itself. Therefore, we opt for simple correlation
structures that capture “most of the correlation” without getting caught
up in extensive correlation modeling.

In a time-dependence context, AR(1) models are often sufficient.

If we are willing to consider other ARMA models, two tools that are useful
in selecting the right ARMAmodel are the sample autocorrelation function
(ACF) and the sample partial autocorrelation function (PACF).

Let

ri =
yi − ŷi√
v̂ar(ei)

denote the standardized residuals from a fitted nonlinear model.

The sample autocorrelation at lag ℓ is defined as

ρ̂(ℓ) =

∑n−ℓ
k=1 rkrk+ℓ/(n− ℓ)∑n

k=1 r
2
k/n

, ℓ = 1, 2, . . .

The sample partial autocorrelation at lag ℓ is a sample estimate of the
correlation between observation et and et−ℓ after removing the effects of
et−1, . . . , et−ℓ+1. The estimate is obtained by a recursive formula not worth
reproducing here.

160

• AR(p) models have PACFs that are non-zero for lags ≤ p and 0 for
lags > p. Therefore, we can look at the magnitude of the sample
PACF to try to identify the order of an AR process that will fit the
data. The number of “significant” partial autocorrelations is a good
guess at the order of an appropriate AR process.

• MA(q) models have ACFs that are nonzero for lags ≤ q and 0 for
lags > q. Again, we can look at the sample ACF to choose q.

• ARMA(p, q) models will have sample ACFs and PACFs that don’t
fit these simple rules. The following table (from Seber & Wild, Ch.
6, p.320) describes the general behavior of the ACF and PACF func-
tions for various ARMA models.

Similarly, in a spatial setting, we can estimate and plot the semivariogram
to help choose an appropriate spatial correlation model. The Variogram()
function in the nlme library will compute either one of two semivariogram
estimators: the classical estimator, and a robust estimator that reduces the
influence of outliers. See Pinheiro and Bates (2000, p.231) for formulas.

161

Example — Cumulative Bole Volume of a Sweetgum Tree

For purposes of forest inventory and planning, it is useful to have
bole-volume equations to predict the volume of trees while standing based
on easily measured tree size variables such as diameter at breast height
(DBH) and stem height. Merchantable volume is the volume from stump
height to a specified upper-bole diameter which establishes the merchantabil-
ity limit. Since this limit is subject to change according to technological
capabilities and economic conditions, it is useful to predict cumulative vol-
ume to an upper diameter d that is variable. Typically, a sample of trees
spanning the range of relevant sizes is felled. For each tree, cumulative
bole volumes Vd and stem diameters d are measured at a series of ascend-
ing heights, and the DBH and total stem height H are measured. In this
example, we consider data from just one tree (tree #5) in a larger data set
analyzed by Gregoire and Schabenberger (1996, JABES) and Davidian &
Giltinan (1995, §11.3).

A partial listing of the data is given below:

Tree Stem Measurement Cumulative
No. DBH Height (H) Diameter (d) Height Volume

5 11.8 97.6 10.7 7.2 5.27
5 11.8 97.6 10.4 10.2 7.09
5 11.8 97.6 10.3 13.2 8.85
...

...
...

...
...

...
5 11.8 97.6 1.1 88.2 27.09

162

• It seems reasonable to expect that cumulative volume measurements
here will be subject to spatial correlation. Measurements taken at
locations that are close to one another, especially observations at
adjacent locations, can be expected to be correlated, with correlation
that we expect to decrease with distance.

• Although the correlation is spatial, there is only one dimension here
— length along the stem — and measurements are taken at equally
spaced locations along this dimension. Therefore, we can handle
these data as though they represent a time series, with time index
t = 1, 2, . . . , 24 (t = (Measurement Ht− 4.2)/3).

• See handout sweetgum1.

• In this R script we follow Davidian and Giltinan in considering mod-
els for cumulative bole volume V as a function of x = log(DBH−d).
We first plot V versus x. This plot reveals a sigmoidal form. Since
the response is cumulative volume, this form is not unexpected. It
has the same general form as a cumulative distribution function.

• While a variety of sigmoidal curves might be chosen to model these
data, we follow Davidian and Giltinan in considering models with a
logistic expectation function,

f(x,θ) =
θ1

1 + exp{(θ2 − x)/θ3}
.

• We first consider m1, a logistic model with spherical errors. A plot
of the residuals doesn’t show a pattern suggestive of heteroscedastic-
ity. However, to investigate possible heteroscedasticity, we refit the
model, now as model m2, with variance function

g2(µi, δ) = |µi|2δ.

The anova() function provides a LRT, as well as AIC and BIC infor-
mation criteria to compare models m1 and m2. According to the test
and the criteria, m2 does not fit significantly better than m1 and the
residual plot for m2 looks almost identical to that for m1. Therefore,
we reject model m2 and conclude that the data are homoscedastic.

163

• Next we obtain plots of the sample ACF and PACF for model m1.
The nlme library contains an ACF() function that computes the
sample ACF directly from a fitted gnls object. We specify the num-
ber of lags for which we want autocorrelations computed with the
maxLag= option. When ploting the ACF we can request error bars
on the ACF function for any given confidence level 100(1 − α)%.
These error bars are placed at

±z1−α/2/n(ℓ), ℓ = 1, 2, . . . ,

where n(ℓ) = the number of residual pairs that went into the cacu-
lation of the autocorrelation at lag ℓ.

• There is no PACF function in nlme, but we can obtain the PACF*
by first extracting the standardized residuals from our model (e.g.,
resid(m1, type=”p”)) and inputting that into the ar() function. The
results of the ar() function can then be input into acf.plot to yield
the PACF plot. This plot also contains a 95% error bar by default.
(The error bars here replace n(ℓ) with n in the formula above, so
they stay constant over increasing lags. There seems to be some
difference of opinion in the literature on which is more appropriate,
n(ℓ) or n).

• The sample ACF and PACF plots are not definitive in this exam-
ple. What we’d really like to see is no significant (partial) auto-
correlations, or only one significant (partial) autocorrelation at lag
1. Without a clear indication of the true correlation structure from
these plots, we consider several ARMA structures, using a trial and
error approach.

* Note that this approach is only appropriate for data taken over an
equally spaced time index from a single subject/unit. This is not appropri-
ate for longitudinal/repeated measures from several subjects in the same
dataset.

164

• In models m3–m7 we fit an AR(1) model, an AR(2), an ARMA(1,1),
an AR(3), and an ARMA(2,1) model, respectively. ACF plots are
produced for all of these models, and a PACF model is produced for
m3. According to the AIC criterion, model m3 (the AR(1) model)
is the winner, and its ACF and PACF plots look pretty good.

• Its very important to note that the PACF and ACF plots for models
with correlation should always be based on the normalized residuals.
The vector of normalized residuals is defined as

r = σ̂−1(Λ̂−T/2)(y − ŷ).

If the estimated variance-covariance structure is correct, r should be
approximately mean 0 with var-cov matrix I. Therefore, if the mean,
correlation and heteroscedasticity models are correct, then the ACF
from r should reflect independent white noise (no pattern and no
significant autocorrelations).

• Note that while the parameter estimates don’t differ much between
model m1 and m3, their standard errors do. It is important to
account for correlation (and heteroscedasticity) to obtain correct in-
ferences.

• The general strategy to choosing an error var-cov structure that we
have taken here is to combine residual analysis with LRTs and in-
formation criteria.

• Finally, note that the ACF() function in the nlme library will work
both for a single time series like this one and for grouped data,
where we essentially have several time series that we are analyzing
simultaneously (e.g., if we had been modeling the cumulative volume
of several trees at once).

– However, for data from multiple time series (i.e. longitudinal
data), the steps we took above to plot the PACF will not
work and should not be followed!

– At present there is no easy way to plot the PACF for a model
fit to longitudinal data in S-PLUS, R.

165

Because of its usefulness, consider again the AR(1) model.

Suppose the homoscedastic AR(1) model holds. That is, suppose the true
model is

yt = f(xt,θ) + et, where et = ϕet−1 + at,

for t = 1, . . . , n.

A simple approach to fitting this model is to transform it to a model with
uncorrelated errors by subtracting ϕ times the model at the previous time
period:

yt − ϕyt−1 = f(xt,θ)− ϕf(xt−1,θ) + et − ϕet−1︸ ︷︷ ︸
=at

, t = 2, . . . , n.

Equivalently,

yt = ϕyt−1 + f(xt,θ)− ϕf(xt−1,θ) + at, t = 2, . . . , n. (∗)

where at has mean 0 and constant variance.

Thus, we can estimate θ and the AR(1) parameter ϕ by fitting (*) with or-
dinary nonlinear least-squares. Note that we fit the model to observations
2, . . . , n. This approach is known as conditional least squares.

Because we must throw out one observation in this approach, we can expect
it to be less efficient than ML estimation, expecially when n is small.

• Although this is an appealing, simple approach, it is not recom-
mended in general.

166

A big improvement to CLS can be made without necessitating anything
more sophisticated than ordinary nonlinear least squares. The technique
is as follows

0. Fit the model

yt = f(xt,θ) + at, t = 1, . . . , n

with ordinary NLS.

1. Compute the moment estimate ϕ̂ of the AR(1) parameter ϕ based
on the residuals {ât} of the most recently fit model:

ϕ̂ =

∑n
t=2 âtât−1∑n

t=1 â
2
t

.

(This is just the sample ACF at lag 1.)

2. Fit the model

zt = g(xt,θ) + at, t = 1, . . . , n,

where

z1 =

√
1− ϕ̂2y1, g(x1,θ) =

√
1− ϕ̂2f(x1,θ)

and for t = 2, 3, . . . , n,

zt = yt − ϕ̂yt−1, g(xt,θ) = f(xt,θ)− ϕ̂f(xt−1,θ).

3. Go to step 1. Repeat until convergence.

• This method is called iterated two-stage estimation and will usually
give an answer very similar to ML estimation. In fact, the one-step
version (omit step 3) will often work well.

167

Sweetgum Example, Continued:

• We illustrate CLS and two-stage estimation on the sweetgum exam-
ple. In model m8 we refit the AR(1) model using CLS.

• We see that the residual ACF plot for the CLS model m8 looks
about the same as the residual ACF plot for the AR(1) model m3.
In addition, the regression parameters estimators are similar in the
two models. However, there is some disagreement in the standard
errors.

• Finally, we implement two-stage estimation in model m9 by taking
ϕ̂ = .4047 to be the ML estimator of ϕ from the AR(1), model m3,
and performing only one iteration. Notice that the results for model
m9 are very similar to those for m3.

An interesting result in our sweetgum example is the effect of accounting
for a non-zero correlation structure on the parameter estimates and their
standard errors.

For the two homoscedastic models m1 and m3 with independence and
AR(1) correlation structures, respectively we had:

m1 (Indep) m3 (AR(1))

Coefficients: Coefficients:
Value Std.Error t-value Value Std.Error t-value

Asym 30.12624 0.6464298 46.60404 Asym 30.17798 0.9306283 32.42753
xmid 0.99812 0.0328612 30.37395 xmid 0.99676 0.0491328 20.28710
scal 0.56360 0.0289948 19.43791 scal 0.57493 0.0414744 13.86223

• The parameter estimates are similar, but the s.e.’s increase substan-
tially when we account for correlation. Why?

168

• Roughly speaking, n dependent observations “contain less informa-
tion” about the marginal mean than n independent observations.
If we fit n dependent observations with an independence model, we
“overestimate” the sample size/precision of our parameter estimates.

• In general, for serially correlated data fit with an independence
model, parameters associated with time invariant explanatory vari-
ables tend to have their s.e.’s underestimated, parameters associated
with time varying explanatory variables tend to have their s.e.’s over-
estimated.

8. Comparison of Models.

Suppose we are considering two or more models and we wish to choose
between them to select the model that best describes the data.

We will break this problem into two cases: Nested vs. Non-Nested Models.

Let f1(x,θ), f2(x,ϕ) denote two possible expectation functions. That is
we are faced with two possible models:

yi = f1(xi,θ) + ei,

yi = f2(xi,ϕ) + ϵi,
i = 1, . . . , n,

where we assume

i. the error var-cov structure is the same in the two models, and

ii. the error var-cov structure is spherical in the two models.

• We will eventually drop assumption (ii.), but we keep it for now.

We say the models are nested if one is a special case of the other.

169

Examples:

1. Obviously nested models:

f1(x,θ) =
θ1

θ2 + x

f2(x,ϕ) = ϕ3 +
ϕ1

ϕ2 + x

Clearly, f1 is a special case of f2 corresponding to ϕ1 = θ1, ϕ2 =
θ2, ϕ3 = 0.

2. Not-so-obviously nested models:

f1(x,θ) =
θ1

θ2 + x

f2(x,ϕ) =
1

ϕ1 + ϕ2x+ ϕ3x2

These are nested as well, because we can re-parameterize f1 as

f1 =
1

ϕ1 + ϕ2x

where ϕ1 = θ2/θ1 and ϕ2 = 1/θ1.

3. Non-nested models:

f1(x,θ) = θ1(1− e−θ2x)

f2(x,ϕ) =
ϕ1

1 + eϕ2−ϕ3x

To show these models are non-nested one need only show that for
one choice of θ it is not possible to find a ϕ so that f1 = f2.

E.g., for θ = (1, 1)T ,

f1(x,θ) = 1− e−x ̸= ϕ1

1 + eϕ2−ϕ3x
for any ϕ.

170

1. Nested Models.

Let f1, f2 denote expectation functions and suppose f1 is a special
case of f2.

Q: Is the added complexity of f2 needed?

That is, we wish to test

H0 : (f1 and f2 both hold), versus H1 : (only f2 holds).

By analogy with the linear model, we might consider the test statistic

F =
(SSE1 − SSE2)/(dfE1 − dfE2)

SSE2/dfE2

where SSEj and dfEj are the error sum of squares and error d.f.,
respectively, under model fj , j = 1, 2.

For an α-level test of H0 versus H1, we compare this test statistics
with the upper αth quantile of its distribution under H0.

Under H0, F
.∼ F (dfE1 − dfE2,dfE2), so an approximate test has

rejection rule: reject H0 if

F > F1−α(dfE1 − dfE2,dfE2).

• Note that this test is a likelihood ratio test.

Quite generally in a model with a parametric likelihood function
L(γ;y) depending on parameter γ and data y, under certain reg-
ularity conditions nested models can be tested by comparing the
values of the likelihood when maximized under the competing mod-
els.

171

That is, we reject H0 for large values of the ratio

λ ≡ L(γ̂;y)

L(γ̂0;y)

where

γ̂0 = MLE under H0 (under null, or partial model)

γ̂ = MLE under H1 (under alternative, or full model)

Logic: If the observed data are much less likely under H0 than under
H1 then λ >> 1 and we should reject H0.

In our spherical errors nonlinear regression model, suppose we wish
to test

H0 : Aθ = b versus H1 : Aθ ̸= b

where A is k × p.

The likelihood function is

L(θ, σ2;y) = (2πσ2)−n/2 exp

{
− 1

2σ2
∥y − f(X,θ)∥2

}
(cf. p.16).

Therefore, the LR is

λ =
L(θ̂, σ̂2;y)

L(θ̂0, σ̂2
0 ;y)

=
(2πσ̂2)−n/2 exp

{
− 1

2σ̂2 ∥y − f(X, θ̂)∥2
}

(2πσ̂2
0)

−n/2 exp
{
− 1

2σ̂2
0
∥y − f(X, θ̂0)∥2

}

=

(2πσ̂2)−n/2 exp

{
− 1

2 1
n∥y−f(X,

ˆθ)∥2
∥y − f(X, θ̂)∥2

}
(2πσ̂2

0)
−n/2 exp

{
− 1

2 1
n∥y−f(X,

ˆθ0)∥2
∥y − f(X, θ̂0)∥2

}

=

(
σ̂2
0

σ̂2

)n/2

=

(
∥y − f(X, θ̂0)∥2

∥y − f(X, θ̂)∥2

)n/2

=

(
S(θ̂0)

S(θ̂)

)n/2

172

We reject H0 if λ is large compared to its distribution under H0.

Equivalently, we can reject if some increasing function of λ is large
compared with its distribution (which may be easier to calculate).
In particular, we reject at level α if

(λ2/n − 1)
n− p

k
=

[S(θ̂0)− S(θ̂)]/k

S(θ̂)/(n− p)
= F

.∼ F (k, n− p),

which is the same test we presented before arguing simply by analogy.

• Transforming λ to a ratio of mean squares gives us a test statistic
with an approximate F distribution. Alternatively, there is a famous
result known as Wilks’ Theorem that gives the asymptotic distribu-
tion of 2 log(λ) under quite general conditions. The results says

2 log(λ)
.∼ χ2(# of nonredundant restrictions on γ made by H0).

• Therefore, in our spherical errors nonlinear regression model, an al-
ternative test of H0 : Aθ = b is to reject H0 at level α if

2 log(λ) > χ2
1−α(k)

• This test is asymptotically equivalent to the F -test version of the
LRT given above, but the F version of this test performs better
than the chi-square version in small samples.

• In linear regression, the F test given above was exact, and was alge-
braically equivalent to the F test based on

(Aβ̂ − b)T {A(XTX)−1A}−1(Aβ̂ − b)

ks2
∼ F (k, n− p). (∗)

(cf. p.23).

173

• In the nonlinear regression context, (*) becomes

(Aθ̂ − b)T {A(V̂T V̂)−1A}−1(Aθ̂ − b)

ks2
.∼ F (k, n− p). (∗∗)

However, the equivalence no longer holds!

• The statistic (**) is a special case of a Wald test rather than a LRT.
It can still be used as an approximate F -test statistic. However, the
validity of the Wald test is affected by parameter-effects nonlinear-
ity and intrinsic nonlinearity whereas the LRT is affected only by
intrinsic nonlinearity. This makes the LRT the preferred choice for
testing nested models.

What if the errors are heteroscedastic and/or correlated?

Consider the problem of testing

H0 : Aθ = b vs. H1 : Aθ ̸= b

based on the (full) model

y = f(X,θ) + e, where var(e) = σ2Λ(λ).

• When testing such a hypothesis on the mean parameter θ using a
LRT, the variance-covariance model should be kept fixed!

The reason for this is that we do not want to confound our question con-
cerning the mean structure with issues concerning the variance-covariance
structure.

Q: Where do we fix the value of Λ(λ)?

A: At Λ(λ̂) where λ̂ is our best estimate of λ.

• λ̂ should be obtained from the full (alternative) model under con-
sideration in the hypothesis test, or, better yet, the fullest model
among all of those under consideration in the analysis.

174

• The degrees of freedom for the test is still given by k, because we are
not fixing λ at a known value, but rather an estimated value. We
still have just as many variance-covariance parameters to estimate
in both the null and alternative models.

Example — High-Flux Hemodialyzer Ultrafiltration Rates

Vonesh and Carter (1992, Biometrics) describe and analyze data measured
on high-flux hemodialyzers to assess their in vivo ultrafiltration character-
istics. The ultrafiltration rates (in ml/hr) of 20 high-flux dialyzers were
measured at 7 ascending transmembrane pressures (in dmHg). The in
vivo evaluation of the dialyzers used bovine blood at flow rates of either
200 dl/min or 300 dl/min. These data are described in Appendix A.6 of
Pinheiro and Bates (2000) and analyzed in their book in §5.2.2, §5.4, and
§8.3.3. The data are included as the groupedData object Dialyzer in the
nlme library for S-PLUS. We give a partial listing of the data below.

Obs. Blood Flow Transmembrane Ultrafiltration W/in Subject
No. Subject Rate (QB) Pressure Rate Index

1 1 200 0.240 0.645 1
2 1 200 0.505 20.115 2
3 1 200 0.995 38.460 3
4 1 200 1.485 44.985 4
5 1 200 2.020 51.765 5
6 1 200 2.495 46.575 6
7 1 200 2.970 40.815 7
8 2 200 0.240 3.720 1
9 2 200 0.540 18.885 2
...

...
...

...
...

...
139 20 300 2.510 53.625 6
140 20 300 3.000 56.430 7

175

The model we consider for these data is an asymptotic regression model
with an offset (as in Appendix C.2 of Pinheiro and Bates (2000)). We
model y = ultrafiltration rate as the following function of x =transmembrane
pressure:

yi = θ1{1− exp[−eθ2(xi − θ3)]}+ ei, i = 1, . . . , n. (∗)

The parameters here have the folowing interpretations: θ1 = the maximum
ultrafiltration rate that can be obtained (the upper asymptote), θ2 = the
log of the hydrolic permeability transport rate; and θ3 = the transmem-
brane pressure required to offset the oncotic pressure.

• See handout dialyzer1.

• Since Dialyzer is a groupedData object it is very easy to plot using
the simple command, plot(Dialyzer, outer = ∼ QB). This yields
plots of ultrafiltration rate (y) versus transmembrane pressure (x)
separately by blood flow rate (QB=200 vs. QB=300). From this
plot we can see the asymptotic form of the relationship with possibly
different values of the parameters for the two QB groups.

• The nlme library contains a handy function nlsList() that allows one
to fit separate nonlinear regressions within each of several groups
using nls to fit each separate model. We use this function to fit
separate models of the form (*) for each value of QB. We see that
θ1 and θ2 appear to change across QB groups, but θ3 does not.

• A useful technique to compare the θ values across groups is to plot
95% intervals for each component of θ, separately by group. This
is easily done by extracting the intervals from m1Dial.lis with the
intervals() function and feeding that into the plot function. Clearly,
there is little overlap in the intervals for θ1 and θ2, but considerable
overlap for θ3.

• These results suggest fitting a model with dummy variables to allow
θ1 and θ2 to change with QB.

176

Dummy Variables:

Suppose we have grouped data yij where yij represents the j
th observation

from the ith group:

yij ,
i = 1, . . . , a
j = 1, . . . , ni

Suppose our model for yij involves a parameter γ, say, that we wish to
change across groups. That is, we want the value of γ associated with yij
to change with i but not j.

There are many different ways to choose a parameterization to accomplish
this. Perhaps the simplest is to replace γ with

γi = γ11{i=1} + γ21{i=2} + · · ·+ γa1{i=a}

where

1{A} =

{
1, if condition A is true;
0, otherwise.

• Here, γi has the interpretation as the γ-parameter associated with
group i, i = 1, . . . , a.

Alternatively, we can replace γ with

γ1 + ϕ21{i=2} + ϕ31{i=3} + · · ·+ ϕa1{i=a}

• Here, the interpretations as follows:

γ1 = the γ parameter for group 1

γ1 + ϕ2 = the γ parameter for group 2

γ1 + ϕ3 = the γ parameter for group 3

...

γ1 + ϕa = the γ parameter for group a

Hence, ϕi has the interpretation as the additive effect of being in
group i versus being in group 1. This is an especially convenient
parameterization when group 1 corresponds to a standard of com-
parison (e.g., a control group, or the standard treatment group).

177

A third option is to replace γ with

γ0 + γi = γ0 + γ11{i=1} + γ21{i=2} + · · ·+ γa1{i=a},

where γ1, γ2, . . . , γa are constrained to sum to 0.

• Here, the interpretations are as follows:

γ0 = the “average’ γ parameter across all groups

γ1 = the effect up or down from γ0 associated with group 1

γ2 = the effect up or down from γ0 associated with group 2

...

γa = the effect up or down from γ0 associated with group a

In this ANOVA-type parameterization, note that for a = 2 groups we can
use the the constraint γ1 + γ2 = 0 to write γ2 = −γ1 so that γ becomes

γ0 + γ11{i=1} + γ21{i=2} = γ0 + γ11{i=1} − γ11{i=2}

= γ0 + γ1(1{i=1} − 1{i=2}).

and the hypothesis of equal γ values across groups can be tested by testing
H0 : γ1 = 0.

178

While all three approaches can be generalized to > 1 grouping factor,
the ANOVA coding is particularly convenient. Suppose now we have two
2-level grouping factors, F1, and F2, and we have data yijk, the k

th obser-
vation at the ith level of F1 combined with the jth level of F2.

E.g., suppose we have three replicates at each combination of F1 and F2:

yijk F1 (i) F2 (j) Replicate (k)

y111 1 1 1
y112 1 1 2
y113 1 1 3
y121 1 2 1
y122 1 2 2
y123 1 2 3
y211 2 1 1
y212 2 1 2
y213 2 1 3
y221 2 2 1
y222 2 2 2
y223 2 2 3

Then we can let γ differ across the four groups by replacing γ by

γ0 + αi + βj + γij (†)

where we constrain the parameters so that
∑

i αi =
∑

j βj =
∑

i γij =∑
j γij = 0. By substituting these constraints into (†) it’s not hard to see

that this simplifies to

γ0 + α1(1{i=1} − 1{i=2}) + β1(1{j=1} − 1{j=2})

+ γ11(1{i=1,j=1} − 1{i=1,j=2} − 1{i=2,j=1} + 1{i=2,j=2})

and we can test main effects and interaction between F1 and F2 with the
following hypotheses:

H0 : γ11 = 0 ⇒ no interaction between F1 and F2

H0 : α1 = 0 ⇒ no main effect of F1

H0 : β1 = 0 ⇒ no main effect of F2

179

Back to the example:

• For now we assume all three parameters θ1, θ2, θ3 differ across QB
groups and we use the reference group-type parameterization to do
this. That is, we make the substitutions

θ1 = ϕ1 + γ1Qi

θ2 = ϕ2 + γ2Qi

θ3 = ϕ3 + γ3Qi

where

Qi =

{
0, if observation i comes from the QB=200 group; and
1, if observation i comes from the QB=300 group; and

Thus, our model becomes

yi = (ϕ1 + γ1Qi){1− exp[−eϕ2+γ2Qi{xi − (ϕ3 + γ3Qi)}]}+ ei.

We fit this model as m2Dial.gnls.

• Since we suspect that θ3 does not depend on group, we may want to
test this hypothesis. To do so, we can use either a Wald type test of
H0 : γ3 = 0 or a LRT. Before doing so though, we must consider the
adequacy of the assumed variance-covariance structure.

• m2Dial.gnls assumes a spherical var-cov structure. A plot of the
residuals vs fitteds and vs the values of the covariate x =transmembrane
pressure, suggests heterogeneity. We consider variance functions:

g2 = |µi|2δ and g2 = |xi|2δ

in models m3Dial.gnls and m4Dial.gnls, respectively. The latter fits
slightly better according to AIC and BIC, but either could be used.

180

• Next we examine the within-subject autocorrelation. Data were col-
lected on increasing x−values that were increased over 7 consecutive
equally-spaced measurement times. This may induce some serial
correlation within subject, and we do indeed see evidence of strong
autocorrelation in the ACF plot for model m4Dial.gnls.

• An AR(1) model within-subject is fit to the data in m5Dial.gnls.
A LRT test comparing the models with and without autocorrela-
tion (m5 and m4, respectively) indicates that the AR(1) model fits
substantially better than the independence model. In addition, the
residual ACF from model m5 indicates that the AR(1) model is suf-
ficient.

• To test equal θ3-values across QB groups we now test H0 : γ3 = 0.
The Wald test of this hypothesis is given in the summary of model
m5Dial.gnls as the t-statistic for γ3: t = 1.25 (p = .2131).

• For the LRT, we drop γ3 from the model and refit, fixing the het-
erogeneity and autocorrelation parameters at their estimated values
from the full model m5Dial.gnls. This is done with the fixed= op-
tions in varPower() and corAR1(). The test statistic is then equal to
2[logLik(m5Dial.gnls)-logLik(m6Dial.gnls)]=1.6227 which we com-
pare with a χ2 distribution with k = 1 d.f. (We’re testing 1 re-
striction: γ3 = 0.) Note that the d.f. and p-value from the anova()
function are incorrect here.

• Notice that the p-value of .2027 from this LRT is very close to the
Wald test result, p = .2131. The Wald test is substantially easier
to implement, but can be affected by parameter-effects nonlinearity.
Thus there are pros and cons for the Wald vs. LRT approaches, but
the LRT is generally preferrable on statistical grounds.

181

2. Non-nested Models.

Choosing between competing non-nested models using formal means such
as hypothesis tests is a hard problem. See Seber & Wild (1989, §5.9.6)
for a brief discussion of some approaches that have been used and some
references. We take a less formal approach to the problem based on the
following considerations:

i. Theory — any model suggested by theory should have some prece-
dence.

ii. Parsimony — simpler models and/or models with fewer parameters
should be favored

iii. Analysis of residuals — models with “more random/unstructured”
patterns in the residual plots should be favored.

iv. Curvature — models with low parameter-effects nonlinearity should
be preferred.

v. Model selection criteria — also useful are information/model selec-
tion criteria such as AIC and BIC. However, one should be aware of
some misuses and caveats:

• AIC or BIC are not comparable across models that have different
response variables. In particular, one cannot use information crite-
ria to compare a model with response variable y to a model with
response variable g(y) (e.g., log(y) or any other transformation of
y).

182

• Information criteria are not comparable across models involving dif-
ferent data sets. This may seem obvious, but this mistake is often
made especially when small differences in the data set are present
that the analyst may not realize.

– E.g., model 1 might involve x1, and model 2 might involve x1

and x2. If missing values exist on x2 these data will often be
omitted from the data to which model 2 is fit automatically by
the software. In such a situation information criteria cannot
be used to compare the models because they are fit to different
data sets.

• There is some disagreement about how to define AIC and, especially,
BIC in situations in which the data are not all independent.

– In particular, in longitudinal data and other clustered data
settings, it is not so clear whether the penalty term for BIC
should involve n, the total number of observations (which are
not all independent in this context), or the number of indepen-
dent subjects (clusters) in the data set, or some intermediate
quantity.

– E.g., in mixed model software such as PROCs MIXED and
NLMIXED in SAS, the penalty involves the number of levels
of the ”outermost” random effect (in a clusterd data context
this will typically be the number of clusters). So, in two models
fit to the same data set, one with cluster-specific random effects
and one without, the penalty terms for BIC will differ and the
criteria will not be comparable.

To choose among non-nested models, some combination of (i)–(v) should
be used along with the judgement/experience of the analyst.

183

Example — Rabbit Eyes Again

Recall that previously we fit these data using the model

yi = θ1 −
θ2

θ3 + xi
+ ei, i = 1, . . . , n, (1)

where e1, . . . , en are i.i.d. with E(ei) = 0, var(ei) = σ2 and

y = log(eye lens weight)

x = age in days

Since these data exhibit an apparently asymptotic form, we might also
consider the asymptotic regression model as an alternative model. Here we
parameterize it as in SSasymp, the self-starting version of the asymptotic
regression model provided in the nlme software:

yi = θ1 + (θ2 − θ1) exp[−eθ3xi] + ei, i = 1, . . . , n, (2)

with the same assumptions on the errors.

• See handout rabbit3.

• In rabbit3.R we refit model 1 (previously fit in rabbit1.R) as m1rabbit.nls
and we fit model 2 as m2rabbit.nls. Before examining the fitted
models, we should first determine whether one of these models has
a theoretical motivation that would give it precedence. Model 1 is
based on the model originally proposed by Dudzinski and Myky-
towycz (1961). It would require going back to the original paper to
determine whether Dudzinski and Mykytowycz’s original model was
a mechanistic one. We assume for illustration purposes that it was
not.

• Since both models are 3-parameter models, neither is more parsimo-
nious.

184

• In the first page of plots in rabbit3, the fitted curves for models 1
and 2 are displayed. In addition, on the second page of plots there
are plots of the residuals versus fitteds for both models and residuals
versus the covariate Age for both models.

• Notice that model 2 does not appear to fit the data as well near the
elbow in the curve and for large values of Age. This poor fit is espe-
cially obvious in the residual plots for model 2. In the Residuals vs.
Age plots, the homoscedasticity assumption appears to be violated
in both models, with variance apparently decreasing with Age.

• To deal with this heteroscedasticity, we refit these models with gnls()
and then add in heteroscedasticity of the form

var(ei) = σ2|Agei|2δ (∗)

using the varPower(form = ∼ Age) specification. The heteroscedas-
tic versions of models 1 and 2 are m1arabbit.gnls and m2arabbit.gnls,
respectively, and based on the LRTs and information criteria pro-
duced by the anova() function, these models fit substantially better
than their homoscedastic counterparts.

• On the final page of plots in rabbit3, we reproduce the residual plots
for the models with heteroscedasticity. Now model (1) appears to
fit well, but model (2) still shows substantial misspecification in the
expectation function.

• On this basis we prefer model (1) with heteroscedastic errors as in

(*). Note that δ is estimated as δ̂ = −.266 indicating that the error
standard deviation decreases with Age, as expected.

185

Models Defined by Systems of Differential Equations

• Read Ch. 5 of Bates & Watts (handout). See also Ch. 8 of Seber &
Wild.

An important and large subclass of nonlinear models occurs when the re-
sponse is described by a system of ordinary differential equations. These
models are used in a wide variety of fields, but one important area of appli-
cation is pharmacokinetics, where they are called compartment models.

• These models were introduced briefly on pp. 54–57 of the notes and
we recall some of that material now:

• Compartmental models are mechanistic models where one or more
measurements of some physical process is related to time, inputs to
the system, and other explanatory variables through a compartmen-
tal system.

• A compartmental system is “a system which is made up of a finite
number of macroscopic subsystems, called compartments or pools,
each of which is homogeneous and well mixed, and the compartments
interact by exchanging materials. There may be inputs from the
environment into one or more of the compartments, and there may
be outputs (excretion) from one or more the compartments to the
environment.” (Seber & Wild, p.367)

• Compartmental models are common in chemical kinetics, toxicology,
hydrology, geology, and pharmacokinetics.

186

As an example from pharmacokinetics, consider the data in the following
scatterplot on tetracycline concentration over time.

•

•

• •

•

•

•

•

•

Time (hrs)

T
et

ra
cy

cl
in

e
C

on
ce

nt
ra

tio
n

(m
ug

/m
l)

5 10 15

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Tetracycline Concentration vs. Time

The data come from a study in which a tetracycline compound was ad-
ministered to a subject orally, and the concentration of tetracycline hy-
drochloride in the blood serum was measured over a period of 16 hours
(the data are in Appendix A1.14 of our text).

A simple compartmental model for the biological system determining tetra-
cycline concentration in serum is one that hypothesizes

a. a gut compartment into which the chemical is introduced,

b. a blood compartment which absorbs the chemicals from the gut, and

c. an elimination path.

187

This simple two-compartment open model can be represented in a com-
partment diagram as follows:

Here, γ1 and γ2 represent the concentrations of the chemical in compart-
ments 1 and 2, respectively, and θ1 and θ2 represents rates of transfer into
and out of compartment 2, respectively.

• The model above is an example of an open compartment model.
Compartment models with no interchange with the environment are
said to be closed; otherwise they are open.

Under the assumption of first-order (linear) kinetics, it is assumed that at
time t, the rate of elimination from any compartment is proportional to
γ(t), the concentration currently in that compartment.

Thus the rates of change in the concentrations in the two compartments
in the model represented above are

γ̇1 ≡ ∂γ1(t)

∂t
= −θ1γ1(t)

γ̇2 ≡ ∂γ2(t)

∂t
= θ1γ1(t)− θ2γ2(t)

Here, the dot denotes differentiation with respect to time.

• We will restrict attention to first-order or linear compartment mod-
els.

• Another restriction of our scope is to ordinary differential equations.
In particular, we exclude models based on systems of partial differ-
ential equations.

188

Differential equations solutions for linear compartmental models generally
take the form of linear combinations of exponentials. Therefore, these
models are nonlinear models that can be fit using methods similar to those
used for yield-density models, growth curve models, etc.

• E.g., the biexponential model that we’ve worked with several times
already comes up often in the analysis of compartment models.

For example, under the assumptions that at time 0 γ1(0) = θ3 and γ2(0) =
0, the solution for γ2(t), the concentration in blood serum at time t is

γ2(t) =
θ3θ1(e

−θ1t − e−θ2t)

θ2 − θ1
.

Therefore, we might try the additive error model

yi =
θ3θ1(e

−θ1ti − e−θ2ti)

θ2 − θ1
+ ei, i = 1, . . . , n,

to model the tetracycline data. The resulting fitted regression curve is
displayed below.

•

•

• •

•

•

•

•

•

Time (hrs)

T
et

ra
cy

cl
in

e
C

on
ce

nt
ra

tio
n

(m
ug

/m
l)

5 10 15

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Tetracycline Concentration vs. Time

189

In the general compartment model with K compartments we write the
concentrations at time t as

γ(t) =

γ1(t)
γ2(t)
...

γK(t)

 .

Assuming first-order kinetics with rate constants θ1, θ2, . . . , θp, the con-
centrations obey the linear system of differential equations

∂γ

∂t
= γ̇(t) = Aγ(t) + i(t)

where A is a K × K matrix known as the transfer matrix and i(t) is a
K × 1 vector-valued function of time representing inputs to the system.

• A contains the rate constants (elements of θ) and is determined by
the model specification (assumed form of the model — how many
compartments and how they exchange material).

• Input into the system at time t, i(t), is often assumed to be of the
form

i(t) =

{
i, if t ≥ 0 (constant in time); and
0, if t < 0.

Such an input function specifies continuous infusion of material if
t is continuous and step input if time is indexed discretely (t =
0, 1, 2, 3, . . .).

• Another common input specification is a bolus or instantaneous in-
jection of material. In that case i(t) can be replaced by a vector of
initial conditions

γ(0) = γ0.

190

Tetracycline Example:

In the tetracycline example, we can write the model-defining differential
equations as (

γ̇i(t)
γ̇2(t)

)
︸ ︷︷ ︸

=γ̇(t)

=

(
−θ1 0
θ1 −θ2

)
︸ ︷︷ ︸

=A

(
γ1(t)
γ2(t)

)
︸ ︷︷ ︸

=γ(t)

, t > 0

and

γ(t) = γ0 =

(
θ3
0

)
, t = 0.

Another Example — Brunhilda Data

Measurements were taken on the radioactivity of blood samples taken from
a baboon named Brunhilda at a number of specified times after a bolus
injection of radiactive sulfate. The data are given below:

Time Time Time
(min) Count (min) Count (min) Count

2 151117 25 70593 90 53915
4 113601 30 67041 110 50938
6 97652 40 64313 130 48717
8 90935 50 61554 150 45996
10 84820 60 59940 160 44968
15 76891 70 57698 170 43602
20 73342 80 56440 180 42668

191

We consider a three-compartment open model of the following form
for these data:

The measurements are treated as coming from compartment 1 and the
bolus injection was taken as going into compartment 1.

The linear system defining the model is

γ̇1 = −(θ1 + θ2)γ1(t) + θ3γ2(t)

γ̇2 = θ2γ1(t)− (θ3 + θ4)γ2(t) + θ5γ3(t)

γ̇3 = θ4γ2(t)− θ5γ3(t)

subject to γ(0) = γ0 = (θ6, 0, 0)
T .

Here,

A =

−(θ1 + θ2) θ3 0
θ2 −(θ3 + θ4) θ5
0 θ4 −θ5

 .

192

Estimation in Compartment Models

There are several approaches to estimating parameters in compartment
models:

1. Most obvious is to obtain the analytic solution to the system of
differential equations and use that as the expectation function in an
ordinary NLS fitting routine.

– A drawback is that it is often difficult and sometimes impossi-
ble to derive closed form expressions for the expectation func-
tion and its derivatives with respect to the parameters.

2. Again we can use on ordinary NLS fitting routine but now with
expectation function which is calculated numerically by solving the
differential equations with quadrature (numerical integration).

3. A method of historical interest is as follows: A K-compartment
model generally has a solution to its differential equations that takes
the form of a sum of exponentials where the coefficients and expo-
nents are functions of the rate parameters θ1, θ2, . . . , θK . Therefore,
fit a generic sum-of-exponentials model of the form

γj(t) =

K∑
k=1

βke
λkt + e (∗)

then use the relationship between the exponential parameters (β,λ)

and the system parameters θ to solve for θ̂ from (β̂, λ̂).

– Since we need the analytic solution of the differential equations
to know the relationship between θ and (β,λ), it would seem
that we would always prefer method (1) to this method. This
is true if (*) were being fit by NLS because it would be just as
easy to use NLS with (*) parameterized in terms of θ. However,
historically (*) was fit using the method of exponential peeling
(a method adequate for starting values, but pretty crude as a
method of estimation), so (*) could be fit easily in the (β,λ)-
parameterization but not in the θ-parameterization.

193

– In addition to the crudeness of estimation of (*) with peeling,
another problem is that there may be fewer system parameters
in θ than exponential parameters in (β,λ) so that it may not
be possible to solve for θ.

– This approach is obsolete.

4. A fourth method, known as the matrix exponential approach, is very
useful because it does not require an analytic solution to the system
of differential equations and it computes the expectation function
and its derivatives in a unified, efficient manner.

The Matrix Exponential Method:

The general solution to the linear differential equation system γ̇(t) =
Aγ(t) + i(t) is given by

γ(t) = eAtγ0 + eAt ∗ i(t)

where the matrix exponential eAt represents the convergent power series

eAt = I+
At

1!
+

(At)2

2!
+ · · ·

and ∗ denoted the convolution,

eAt ∗ i(t) =
∫ t

0

eA(t−u)i(u)du,

where the integration is performed componentwise.

• Therefore, if we can evaluate the matrix exponential eAt and the
convolution integral eAt ∗ i(t), we can evaluation the expectation
function of the model.

• Note that it is rarely useful to sum the power series representation
of eAt to compute it. In addition, the matrix convolution eAt ∗
i(t) can be reduced to easier-to-compute scalar convolutions. Both
computations are simplified by using the spectral decomposition of
A.

194

Suppose it is possible to decompose A as

A = UΛU−1

where Λ = diag(λ1, . . . , λK) is a diagonal matrix containing the eigenvalues
of A, and U contains as its columns the eigenvectors of A. Then we can
write

eAt = I+
At

1!
+

(At)2

2!
+ · · ·

= I+
UΛU−1t

1!
+

(UΛU−1t)2

2!
+ · · ·

= U (I+
Λt

1!
+

(Λt)2

2!
+ · · ·)︸ ︷︷ ︸

≡M

U−1

where M has (i, j)th element given by

Mij =

0 if i ̸= j; and

1 +
λit

1!
+

(λit)
2

2!
+ · · ·︸ ︷︷ ︸

=eλit

if i = j.

Therefore,
eAt = UeΛtU−1 (†)

where
eΛt = diag(eλ1t, . . . , eλKt).

• By using the spectral composition, we’ve reduce the matrix expone-
tial to a simple matrix multiplication given by (†).

195

For a bolus input, this is all we really need, because the convolution integral
eAt ∗ i(t) drops out of the solution. That is, for a bolus input, the system
of differential equations defining the model can be written

γ̇(t) = Aγ(t), for t > 0

γ(0) = γ0, for t ≤ 0.

And this system of equations has solution

γ(t) = eAtγ0 = UeΛtU−1γ0.

For other types of input we need to evaluate the convolution integral eAt ∗
i(t). Again, using the spectral decomposition of A we have

eAt ∗ i(t) =
∫ t

0

eA(t−u)i(u)du

=

∫ t

0

UeΛ(t−u)U−1i(u)du

= U

∫ t

0

eΛ(t−u)κ(u)du

= U
[
eΛt ∗ κ(t)

]
,

where κ(t) = U−1i(t).

Thus if we define ζ(t) = U−1γ(t) we have

ζ(t) = U−1
(
eAtγ0 + eAt ∗ i(t)

)
= eΛtζ0 + eΛt ∗ κ(t)

where ζ0 = U−1γ0.

196

In the case of continuous infusion/step input (recall this is when i(t) = i,
t ≥ 0), we have κ(t) = κ = U−1i, and the convolution integral becomes

eΛt ∗ κ

which evaluates to a vector with ith element

{eΛt ∗ κ}i =
{
κi

eλit−1
λi

, if λi ̸= 0; and
κit if λi = 0.

• This gives us all we need to calculate the solution the system of
differential equations defining the model (that is, to calculate the
expectation function of our model) in an efficient manner.

• Note that this approach assumes that a spectral decomposition exists
for A and that the eigenvalues of A are all real. These conditions
do not always hold, and Bates and Watts give generalizations of this
procedure to cover those situations in Appendix A5 of their text.

How about computing derivatives of the expectation function with
respect to the parameters θ1, . . . , θp for the G-N method?

These can be calculated using the same tools. But before we describe
how that works, we need to talk about dead time because it can add a
parameter to our model that we want to account for.

197

Dead time:

Often there is a delay or lag between time 0 when the system is initialized
(e.g., the bolus dose is given) and when the system reacts (e.g, before
drug concentration changes from its initial value). This delay is called
dead time, and can be built into our model as an extra parameter to be
estimated.

We denote the time at which the system reacts as t0. In the presence of
dead time, t0 > 0 and the model-defining system of differential equations
becomes

γ̇(τ) = Aγ(τ) + i(τ), if τ > 0

γ(τ) = γ0, if τ = 0,
(∗)

where

τ =

{
t− t0, if t ≥ t0; and
0, otherwise.

• Here t0 can be assumed known or treated as an unknown parameter
to be estimated.

With dead time, the general solution to (*) becomes

γ(τ) =

{
γ0, if τ = 0; and
eAτγ0 + eAτ ∗ i(τ), if τ > 0.

(∗∗)

• Evaluation of the expectation function of the model goes through
essentially as before, but with t replaced by τ .

198

To illustrate how dead time can be useful, we refit the two-compartment
model of p.181 to the tetracycline data with an unknown dead time pa-
rameter t0 added to the model. The resulting fitted curve fits the data
considerably better than the model without dead time:

Time (hrs)

T
et

ra
cy

cl
in

e
C

on
ce

nt
ra

tio
n

(m
ug

/m
l)

5 10 15

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Tetracycline Concentration vs. Time

2-Compartment model w/o Dead Time
2-Compartment model w/ Dead Time

199

Back to computing derivatives of the expectation function:

Notation: we will denote a derivative with respect to θj by a (j)-subscipt.
E.g., the derivatives we are after are

γ(j)(τ) ≡
∂γ(τ)

∂θj
, j = 1, . . . , p.

In the general solution given by (**), γ(τ) depends on γ0, A, τ , and i. For
any given paramater θj for which we seek the derivative γ(j), one, some
or all of these quantities may depend upon θj . Therefore, we consider the
formula for γ(j) by cases.

Case 1: τ depends on θj ; γ0, A, and i do not.

In this case we use the chain rule. By the chain rule,

γ(j)(τ) ≡
∂γ(τ)

∂θj

=
∂γ(τ)

∂τ

∂τ

∂θj

= γ̇(τ)τ(j) = τ(j)[Aγ(τ) + i(τ)]

Case 2: Suppose A, γ0, and/or i depend on θj , but τ does not. Then we
can differentiate (*) to obtain

γ̇(j)(τ) = Aγ(j)(τ) +A(j)γ(τ) + i(j) (‡)

Since we’re trying to compute γ(j)(τ) not γ̇(j)(τ), (‡) does not directly
give us what we seek.

However, (‡) does give us a differential equation whose solution is what
we seek: γ(j)(τ).

200

